Skip to main content
Log in

Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments: an overview

  • Invited Lecture
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The concept of limiting nutrients is a cornerstone of theories concerning the control of production, structure and dynamics of freshwater and marine plankton. The current dogma is that nitrogen is limiting in most marine environments while freshwater ecosystems are mostly phosphorus-limited, although evidence of phytoplankton limitation by either N or P has been found in both environments.

However, the same considerations apply to the availability of phosphorus in freshwater as to nitrogen in oceans. In resource-limited environments the plankton dynamics depend mostly on the internal mechanisms which act to recycle the limiting nutrient many times over within the surface waters. As the overall productivity increases, this dependence on nutrient regeneration decreases.

The relationship between the stock of limiting nutrient, rates of supply and plankton dynamics must therefore be seen in the light of the processes operating within the entire food chain over quite different time scales. There is strong evidence that process-rates are mostly size-dependent and that food web interactions at the microbial level (picophytoplankton, bacteria, microheterotrophs) strongly effect the production of carbon and the regeneration of nutrients in the pelagic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, G., 1988. Phosphorus as growth-regulating factor relative to other environmental factors in cultured algae. Hydrobiologia 170: 191–210.

    Google Scholar 

  • Azam, F., T. Fenchel, J. E. Field, J. S. Gray, L. A. Meyer-Rield & F. Thingstad, 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Berman, T., 1985. Uptake of (32P) orthophosphate by algae and bacteria in lake Kinneret. J. Plankton Res. 7: 71–84.

    Google Scholar 

  • Bird, D. E. & J. Kalff, 1987. Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

    Google Scholar 

  • Bloem, J., C. Albert, M. J. Bar-Gillissen, T. Berman & T. E. Cappenberg, 1989. Nutrient cycling through phytoplankton, bacteria and protozoa in selectively filtered lake Vechten water. J. Plankton Res. 11: 119–131.

    Google Scholar 

  • Bonin, D. J., 1982. Dynamique nutritionnelle du phytoplancton. Oceanis 8: 459–492.

    Google Scholar 

  • Brown, E. J., D. K. Button & D. S. Lang, 1981. Competition between heterotrophic and autotrophic microplankton for dissolved nutrients. Microb. Ecol. 7: 199–206.

    Google Scholar 

  • Carpenter, S. R. (ed.), 1988. Complex interactions in lake communities. Springer-Verlag, Berlin, 283 p.

    Google Scholar 

  • Cembella, A. D., N. J. Antia & P. J. Harrison, 1984. The utilization of inorganic phosphorus compounds as nutrients by eukaryotic microalgae: a multi-disciplinary perspective. C.R.C. Crit. Rev. Microbiol. 10: 317–391.

    Google Scholar 

  • Currie, D. J. & J. Kalff, 1984. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29: 311–321.

    Google Scholar 

  • Currie, D. J., E. Bentzen & J. Kalff, 1986. Does algal-bacterial phosphorus partitioning vary among lakes? A comparative study of orthophosphate uptake and alkaline phosphatase activity in freshwater. Can. J. Fish. aquat. Sci. 43: 311–318.

    Google Scholar 

  • Dauta, A., 1983. Conditions de développement du phytoplancton. Etude comparative du comportement de huit espèces en culture. Cinétique d'assimilation et de croissance: étude expérimentale, modélisation appliquée aux cultures et à un milieu naturel (le Lot). Thèse Doctorat Sci. Univ. Toulouse III, 166 p.

  • Droop, M. R., 1973. Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264–272.

    Google Scholar 

  • Ejsmont-Karabin, J., 1984. Phosphorus and nitrogen excretion by lake zooplankton (Rotifers and Crustaceans) in relationship to individual body weights of the animals, ambiant temperature and presence or absence of food. Ekol. Pol. 32: 3–42.

    Google Scholar 

  • Eppley, R. W., 1981. Relations between nutrient assimilation and growth in phytoplankton with a brief review of estimates of growth rate in the ocean. Can. Bull. Fish. aquat. Sci. 210: 251–263.

    Google Scholar 

  • Falkowski, P. (ed.), 1980. Primary productivity in the sea. Brookhaven Symposia in Biology 31, Plenum Press, NY., 531 p.

    Google Scholar 

  • Friebele, E. S., D. L. Correll & M. A. Faust, 1978. Relationship between phytoplankton cell size and the rate of orthophosphate uptake: in situ observations of an estuarine population. Mar. Biol. 45: 39–52.

    Google Scholar 

  • Gardiner, A. C. 1937. Phosphate production of planktonic animals. J. Cons. int. Explor. Mer 12: 144–146.

    Google Scholar 

  • Glibert, P., F. Lipschultz, J. J. McCarthy & M. A. Altabet, 1982. Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr. 27: 639–650.

    Google Scholar 

  • Goldman, J. C., 1980. Physiological processes, nutrient availability and the concept of relative growth rate in marine phytoplankton ecology. In: P. Falkowski (ed.), Primary productivity in the sea. Brookhaven Symposia in Biology 31, Plenum Press, N.Y.: 179–194.

    Google Scholar 

  • Goldman, J. C. & P. M. Glibert, 1983. Kinetics of inorganic nitrogen by phytoplankton. In: E. J. Carpenter & D. G. Capone (eds.), Nitrogen in the marine environment — Academic Press, N.Y.: 233–274.

    Google Scholar 

  • Harris, G. P., 1986. Phytoplankton ecology: structure, function and fluctuation. Chapman and Hall, London, 384 p.

    Google Scholar 

  • Harrison, W. G., 1980. Nutrient regeneration and primary production in the sea. In: P. Falkowski (ed.), Primary productivity in the sea. Brookhaven Symposia in Biology 31, Plenum Press, N.Y.: 433–460.

    Google Scholar 

  • Harrison, W. G., T. Platt & M. R. Lewis, 1980. f ratio and its relationship to ambient nitrate concentration in coastal waters. J. Plankton Res. 9: 235–248.

    Google Scholar 

  • Harrison, W. G. & L. E. Wood, 1988. Inorganic nitrogen uptake by marine picoplankton: Evidence for size partitioning. Limnol. Oceanogr. 33: 468–475.

    Google Scholar 

  • Healey, F. P. & L. L. Hendzel, 1979. Indicators of phosphorus and nitrogen deficiency in five algae in culture. J. Fish. Res. Bd Can. 36: 1364–1369.

    Google Scholar 

  • Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796–822.

    Google Scholar 

  • Herbland, A., 1988. Evolution du concept d'oligotrophie au cours des quinze dernières années. Le Courrier de Médiprod (Banyuls-sur-mer, France) 5: 3–7.

    Google Scholar 

  • Hobbie, J. E., 1988. A comparison of the ecology of planktonic bacteria in fresh and salt water. Limnol. Oceanogr. 33: 750–764.

    Google Scholar 

  • Jansson, M., 1988. Phosphate uptake and utilization by bacteria and algae. Hydrobiologia 170: 177–189.

    Google Scholar 

  • Jassby, A. D. & C. R. Goldman, 1974. Loss rates from a lake phytoplankton community. Limnol. Oceanogr. 19: 618–627.

    Google Scholar 

  • Kilham, P. & R. E. Hecky, 1988. Comparative ecology of marine and freshwater phytoplankton. Limnol. Oceanogr. 33: 776–795.

    Google Scholar 

  • Klein, P. & B. Coste, 1984. Effects of wind-stress variability on nutrient transports into the mixed layer. Deep-Sea Res. 31: 21–37.

    Google Scholar 

  • Laws, E. A., W. G. Harrison & G. R. DiTullio, 1985. A comparison of nitrogen assimilation rates based on 15N uptake and autotrophic protein synthesis. Deep-Sea Res. 32: 82–95.

    Google Scholar 

  • Lean, D. R. S. & C. Nalewajko, 1976. Phosphate exchange and organic phosphorus excretion by freshwater algae. J. Fish. Res. Bd Can. 33: 1312–1323.

    Google Scholar 

  • Lehman, J. T., 1980a. Nutrient recycling as an interface between algae and grazers in freshwater communities. In: W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities, University Press of New England, London: 251–263.

    Google Scholar 

  • Lehman, J. T., 1980b. Release and cycling of nutrients between planktonic algae and herbivores. Limnol. Oceanogr. 25: 620–632.

    Google Scholar 

  • Lehman, J. T., 1988. Ecological principles affecting community structure and secondary production by zooplankton in marine and freshwater environments. Limnol. Oceanogr. 33: 931–945.

    Google Scholar 

  • Levine, S. N., M. P. Stainton & D. W. Schindler, 1986. A radiotracer study of phosphorus cycling in a eutrophic Canadian Shield lake, Lake 227, north-western Ontario. Can. J. Fish. aquat. Sci. 43: 366–378.

    Google Scholar 

  • Maestrini, S. Y., D. J. Bonin & M. R. Droop, 1984. Phytoplankton as indicators of sea water quality: bioassay approaches and protocols. In: L. E. Shubert (ed.), Algae as ecological indicators, Academic Press, London: 71–131.

    Google Scholar 

  • Malone, T. C., 1980a. Algal size. In: I. Morris (ed.), The physiological ecology of phytoplankton, Blackwell, Oxford: 433–463.

    Google Scholar 

  • Malone, T. C., 1980b. Size fractionated primary productivity of marine phytoplankton. In: P. Falkowski (ed.), Primary productivity in the sea, Brookhaven Symposia in Biology 31, Plenum Press, N.Y.: 301–319.

    Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493–509.

    Google Scholar 

  • Mazumder, A., D. J. McQueen, W. D. Taylor & D. R. S. Lean, 1988. Effects of fertilization and planktivorous fish (yellow perch) predation on size distribution of particulate phosphorus and assimilated phosphate: Large enclosure experiments. Limnol. Oceanogr. 33: 421–430.

    Google Scholar 

  • McQueen, D. J., J. R. Post & E. R. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.

    Google Scholar 

  • Mills, E. L. & J. L. Forney, 1988. Trophic dynamics and development of freshwater pelagic food webs. In: S. R. Carpenter (ed.), Complex interactions in lake communities, Springer-Verlag, NY: 12–30.

    Google Scholar 

  • Morris, D. P. & W. M. Lewis jr, 1988. Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwat. Biol. 20: 315–327.

    Google Scholar 

  • Morris, I. (ed.), 1980. The physiological ecology of phytoplankton, Blackwell, Oxford, 625 p.

    Google Scholar 

  • Nalewajko, C. & D. R. S. Lean, 1980. Phosphorus. In: I. Morris (ed.), The physiological ecology of phytoplankton, Blackwell, Oxford: 235–258.

    Google Scholar 

  • Officer, C. B. & J. H. Ryther, 1980. The possible importance of silicon in marine eutrophication. Mar. Ecol. Prog. Ser. 3: 83–91.

    Google Scholar 

  • Paasche, E., 1980. Silicon content of five marine plankton diatom species measured with a rapid filter method. Limnol. Oceanogr. 25: 474–480.

    Google Scholar 

  • Pace, M. L., 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol. Oceanogr. 3: 45–55.

    Google Scholar 

  • Peters, R. H., 1986. The role of prediction in Limnology. Limnol. Oceanogr. 31: 1143–1159.

    Google Scholar 

  • Peterson, B. J., 1980. Aquatic primary productivity and the 14C-CO2 method: a history of the productivity problem. Annu. Rev. Ecol. Syst. 11: 359–385.

    Google Scholar 

  • Platt, T. (ed.), 1980. Physiological bases of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. 210, 346 p.

    Google Scholar 

  • Pollingher, U. & C. Serruya, 1976. Phased division of Peridinium cinctum va westi and the development of blooms in lake Kinneret. J. Phycol. 15: 155–162.

    Google Scholar 

  • Porter, K. G., H. Pearl, R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia & J. Stockner, 1988. Microbial interactions in Lake food webs. In: S. R. Carpenter (ed.), Complex interactions in Lake Communities, Springer-Verlag, Berlin: 209–227.

    Google Scholar 

  • Pourriot, R., J. Capblancq, P. Champ & J. A. Meyer, 1982. Ecologie du plancton des eaux continentales. Masson, Paris: 198 p.

    Google Scholar 

  • Ramberg, L., 1980. A population dynamics model for Oocystis parva (Chlorophyceae). Arch. Hydrobiol. 89: 118–134.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton, Cambridge University Press, London, 384 p.

    Google Scholar 

  • Rhee, G. Y., 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol. Oceanogr. 23: 10–25.

    Google Scholar 

  • Rhee, G. Y. & I. J. Gotham, 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol. 16: 486–489.

    Google Scholar 

  • Riemann, B., 1985. Potential influence of fish predation and zooplankton grazing on natural populations of freshwater bacteria. Appl. envir. Microbiol. 50: 187–193.

    Google Scholar 

  • Rigler, F. H., 1973. A dynamic view of the phosphorus cycle in lakes. In: E. J. Griffith, A. Beeton, J. M. Spencer & D. T. Mitchell (eds.), Environmental phosphorus handbook, Wiley, NY: 539–572.

    Google Scholar 

  • Sager, P. E., B. Rubio & J. Kirk, 1988. The importance of nanoplankton along the trophic gradient in Green Bay, Lake Michigan. Verh. int. Ver. Limnol. 23: 376–379.

    Google Scholar 

  • Scavia, D. & G. L. Fahnenstiel, 1988. From picoplankton to fish: complex interactions in the Great Lakes. In: S. R. Carpenter (ed.), Complex interactions in lake communities, Springer-Verlag, Berlin: 85–97.

    Google Scholar 

  • Schelske, C. L., E. F. Stoermer, G. L. Fahnenstiel & M. Haibach, 1986. Phosphorus enrichment, silica utilization, and biogeochemical silica depletion in the Great Lakes. Can. J. Fish. aquat. Sci. 43: 407–415.

    Google Scholar 

  • Schindler, D. W., 1988. Experimental studies of chemical stressors on whole lake ecosystems. Verh. int. Ver. Limnol. 23: 11–41.

    Google Scholar 

  • Shuter, B. J., 1978. Size dependence of phosphorus and nitrogen subsistence quotas in unicellular microorganisms. Limnol. Oceanogr. 23: 1248–1255.

    Google Scholar 

  • Smith, R. E. H. & J. Kalff, 1981. The effects of phosphorus limitation on algal growth rates: evidence from alkaline phosphatase. Can. J. Fish. aquat. Sci. 38: 1421–1427.

    Google Scholar 

  • Smith, R. E. H. & J. Kalff, 1982. Size dependent phosphorus uptake kinetics and cell quota in phytoplankton. J. Phycol. 18: 275–284.

    Google Scholar 

  • Smith, R. E. H. & J. Kalff, 1983. Competition for phosphorus among occurring freshwater phytoplankton. Limnol. Oceanogr. 28: 448–464.

    Google Scholar 

  • Smith, S. V., 1984. Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 29: 1149–1160.

    Google Scholar 

  • Smith, V. H., 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnol. Oceanogr. 27: 1101–1112.

    Google Scholar 

  • Sommer, U., 1985. Comparison between steady state and non-steady state competition: experiments with natural populations. Limnol. Oceanogr. 30: 335–346.

    Google Scholar 

  • Sommer, U., 1988. Does nutrient competition among phytoplankton occur in situ Verh. int. Ver. Limnol. 23: 707–712.

    Google Scholar 

  • Sprules, W. G. & M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. aquat. Sci. 43: 1789–1794.

    Google Scholar 

  • Stabel, H. H., 1985. Mechanisms controlling the sedimentation sequence of various elements in prealpine lakes. In: W. Stumm (ed.) Chemical processes in lakes. J. Wiley & Sons, Inc., N.Y.: 143–167.

    Google Scholar 

  • Sterner, R. W., 1986. Herbivores' direct and indirect effects on algal populations. Science 231: 605–607.

    Google Scholar 

  • Stockner, J. G., 1988. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33: 765–775.

    Google Scholar 

  • Stockner, J. G. & N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems: a multidisciplinary perspective. Can. J. Fish. aquat. Sci. 43: 2472–2503.

    Google Scholar 

  • Talling, J. F., 1984. Past and contemporary trends and attitudes in work on primary productivity. J. Plankton. Res. 6: 203–217.

    Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annu. Rev. Ecol. Syst. 13: 349–372.

    Google Scholar 

  • Tilzer, M. M., 1984. Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J. Plankton Res. 6: 309–324.

    Google Scholar 

  • Turpin, D. H. & P. J. Harrison, 1979. Limiting nutrient patchiness and its role in phytoplankton ecology. J. exp. mar. Biol. Ecol. 39: 151–166.

    Google Scholar 

  • Vadstein, O., A. Jensen, Y. Olsen & H. Reinertsen, 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanogr. 33: 489–503.

    Google Scholar 

  • Wheeler, P. A. & D. L. Kirchman, 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol. Oceanogr. 31: 998–1009.

    Google Scholar 

  • White, E., G. Payne, S. Pickmere & F. R. Pick, 1982. Factors influencing orthophosphate turnover times: a comparison of Canadian and New Zealand lakes. Can. J. Fish. aquat. Sci. 39: 469–474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capblancq, J. Nutrient dynamics and pelagic food web interactions in oligotrophic and eutrophic environments: an overview. Hydrobiologia 207, 1–14 (1990). https://doi.org/10.1007/BF00041435

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041435

Key words

Navigation