Skip to main content
Log in

Interfacial dislocation and its applications to interface cracks in anisotropic bimaterials

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Interfacial dislocations and cracks in anisotropic bimaterials are considered. The displacement and the stress fields due to an interfacial dislocation are obtained in a real and simple form. Explicit solutions to the traction along the interface and the crack opening displacement for a Griffith interface crack are derived. Possible definitions of stress intensity factors are given which reduce to the classical definition for a crack in a homogeneous medium. It is found that a planar interface between dissimilar anisotropic solids is completely characterized by no more than 9 independent parameters. Some invariant properties of the dislocation and crack solutions under coordinate transformation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dundurs and T. Mura. Interaction between an edge dislocation and a circular inclusion.J. Mech. Phys. Solids 12 (1964) 177–189.

    Article  Google Scholar 

  2. M. Comninou, A property of interface dislocation.Phil. Mag. 36 (1977) 281–283.

    Google Scholar 

  3. M.L. Williams, The stress around a fault or crack in dissimilar media.Bull. Seismol. Soc. Amer. 49 (1959) 199–204.

    Google Scholar 

  4. F. Erdogan, Stress distribution in bonded dissimilar materials with cracks.J. Appl. Mech. 32 (1965) 403–410.

    Google Scholar 

  5. J.R. Rice and G.C. Sih, Plane problem of cracks in dissimilar media.J. Appl. Mech. 32 (1965) 418–423.

    Google Scholar 

  6. A.H. England, A crack between dissimilar media.J. Appl. Mech. 32 (1965) 400–402.

    Google Scholar 

  7. J.W. Hutchinson, M. Mear and J.R. Rice, Crack paralleling an interface between dissimilar materials.J. Appl. Mech. 54 (1987) 828–832.

    Google Scholar 

  8. J.R. Rice, Elastic fracture mechanics concepts for interfacial cracks.J. Appl. Mech. 55 (1988) 98–103.

    Google Scholar 

  9. S. Nakahara and J.R. Willis, Some remarks on interfacial dislocations.J. Phys. F: Metal Phys. 3 (1973) L249-L254.

    Article  Google Scholar 

  10. D.M. Barnett and J. Lothe, An image force theorem for dislocations in anisotropic bicrystals.J. Phys. F: Metal Phys. 4 (1974) 1618–1635.

    Article  Google Scholar 

  11. O.K. Kirchner and J. Lothe. Displacements and tractions along interfaces.Phil. Mag. A 56 (1987) 583–594.

    Google Scholar 

  12. M. Gotoh, Some problems of bonded anisotropic plates with cracks along the bond.Int. J. Fracture Mech. 3 (1967) 253.

    Google Scholar 

  13. D.L. Clements, A crack between dissimilar anisotropic media.Int. J. Engng Sci. 9 (1971) 257–265.

    Article  Google Scholar 

  14. R.J. Willis, Fracture mechanics of interfacial cracks.J. Mech. Phys. Solids 19 (1971) 353–368.

    Article  Google Scholar 

  15. J.L. Bassani and J. Qu, Finite cracks on bimaterial and bicrystal interfaces.J. Mech. Phys. Solids 37 (1989) 435–453.

    Article  Google Scholar 

  16. T.C.T. Ting, Explicit solution and invariance of the singularities at an interface crack in anisotropic composites.Int. J. Solids Structures 22 (1986) 965–983.

    Google Scholar 

  17. J. Qu and J.L. Bassani, Cracks on bimaterial and bicrystal interfaces.J. Mech. Phys. Solids 37 (1989) 417–433.

    Article  Google Scholar 

  18. T.C.T. Ting, Line force and dislocations in anisotropic elastic composite wedges and spaces. Phys. Stat. Sol. (b), 145 (1988) 81–90.

    Google Scholar 

  19. A.N. Stroh, Dislocations and cracks in anisotropic elasticity.Phil. Mag. 7 (1958) 625–646.

    Google Scholar 

  20. Q.Q. Li and T.C.T. Ting, Line inclusion in anisotropic elastic solids.J. Appl. Mech. 56 (1989) 556–563.

    Google Scholar 

  21. T.C.T. Ting and C. Hwu, Sextic formalism in anisotropic elasticity for almost non-semisimple matrixN.Int. J. Solids Structures 24 (1988) 65–76.

    Article  Google Scholar 

  22. D.M. Barnett and J. Lothe, Synthesis of the sextic and the integral formalism for dislocations, Green's functions and surface waves in anisotropic elastic solids.Phys. Norv. 7 (1973) 13–19.

    Google Scholar 

  23. J. Qu, Green's function in anisotropic bimaterials, SIAM Proc. Ser. from the ARO Workshop onRecent Advances on Mathematical Theory of Anisotropic Elasticity, in press.

  24. R.P. Kanwal,Generalized Functions—Theory and Technique. Academic Press (1983).

  25. J. Dundurs and G.P. Sendeckyj, Behavior of an edge dislocation near a bimetallic interface.J. Appl. Phys. 36 (1965) 3353–3354.

    Google Scholar 

  26. J. Dundurs, Discussion.J. Appl. Mech. 36 (1969) 650–652.

    Google Scholar 

  27. N.I. Muskhelishvili,Singular Integral Equations. P. Noordhoff Ltd. (1953).

  28. P. Chadwick and T.C.T. Ting, On the structure and invariance of the Barnett-Lothe tensors.Q. Appl. Math. 45 (1987) 419–427.

    Google Scholar 

  29. J. Qu and J.L. Bassani, Interface cracks between anisotropic elastic solids,Acta/Scripta Metallurgica Proceedings Series 4 (1990) 407–412.

    Google Scholar 

  30. J. Qu and J.L. Bassani, Fracture mechanics of interface cracks in anisotropic bimaterials,J. Appl. Mech., in press.

  31. J.L. Bassani and J. Qu, Interfacial discontinuities and average bimaterial properties,Acta/Scripta Metallurgica Proceedings Series 4 (1990) 401–406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, J., Li, Q. Interfacial dislocation and its applications to interface cracks in anisotropic bimaterials. J Elasticity 26, 169–195 (1991). https://doi.org/10.1007/BF00041220

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041220

Keywords

Navigation