Plant Molecular Biology

, Volume 29, Issue 4, pp 721–733 | Cite as

Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana

  • Stephanie C. Ems
  • Clifford W. Morden
  • Colleen K. Dixon
  • Kenneth H. Wolfe
  • Claude W. de Pamphilis
  • Jeffrey D. Palmer
Research Article


Expression of the vestigial plastid genome of the nonphotosynthetic, parasitic flowering plant Epifagus virginiana was examined by northern analysis and by charaterization of cDNAs. Probes for each of 12 plastid genes tested hybridized to all lanes of northern blots containing total RNA prepared from stems and fruits of Epifgus and from leaves of tobacco. Certain transcript patterns in Epifagus plastids are highly complex and similar to those of tobacco operons. In contrast, genes such as rps2, which have become orphaned in Epifagus as a result of evolutionary loss of formerly cotranscribed genes, show simpler transcript patterns in Epifagus than in tobacco. Sizing and sequencing of cDNAs generated by reverse transcriptase-PCR for three genes, rps12, rpl2, and clpP, show that their transcripts are properly cis-and/or trans-spliced at the same five group II intron insertion sites used in photosynthetic plants. A single, conventional C→U edit in rps12 was found among the total of 1401 nucleotides of cDNA sequence that was determined for the three genes. An octanucleotide sequence identical to putative guide RNA of plant organelles and perfectly complementary to the rps12 edit site itself was identified just 200 bp upstream of the edit site. These data, together with previous results from the complete sequencing of the Epifagus plastid genome, provide compelling evidence that this degenerate genome is nonetheless expressed and functional. Analysis of the putative maturase MatK, encoderd by the group II intron of trnK in photosynthetic land plants but by a freestanding gene in Epifagus, leads us to hypothesize that it acts ‘in trans’ to assist the splicing of group II introns other than the one in which it is normally encoded.

Key words

Epifagus maturase nonphotosynthetic plant RNA editing splicing transcription 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barkan A: Tissue-dependent plastid RNA splicing in maize: transcripts from four plastid genes are predominantly unspliced in leaf meristems and roots. Plant Cell 1: 437–445 (1989).Google Scholar
  2. 2.
    Boyer SK, Mullet JE: Pea chloroplast tRNALys (UUU) gene: transcription and analysis of an intron-containing gene. Photosyn Res 17: 7–22 (1988).Google Scholar
  3. 3.
    Boyer SK, Mullet JE: Sequence and transcript map of barley chloroplast psbA gene. Nucl Acids Res 16: 8184 (1988).Google Scholar
  4. 4.
    de Pamphilis CW, Palmer JD: Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337–339 (1990).Google Scholar
  5. 5.
    Doyle JJ, Doyle JL: A rapid DNA isolation procedure for small quantities of fresh tissue. Phytochem Bull 19: 11–15 (1987).Google Scholar
  6. 6.
    du Jardin P, Portetelle D, Harvengt L, Dumont M, Wathelet B: Expression of intron-encoded maturase-like polypeptides in potato chloroplasts. Curr Genet 25: 158–163 (1994).Google Scholar
  7. 7.
    Fukuzawa H, Kohchi T, Sano T, Shirai H, Umesono K, Inokuchi H, Ozeki H, Ohyama K: Structure and organization of Marchantia polymorpha chloroplast genome. III. Gene organization of the large single copy region from rbcL to trnI (CAU). J Mol Biol 203: 333–351 (1988).Google Scholar
  8. 8.
    Hess WR, Hoch B, Zeltz P, Hübschmann T, Kössel H, Börner T: Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6: 1455–1465 (1994).Google Scholar
  9. 9.
    Higgins DG, Sharp PM: Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5: 151–153 (1988).Google Scholar
  10. 10.
    Hildebrand M, Hallick RB, Passavant CW, Bournque DP: Trans-splicing in chloroplasts: the rps12 loci of Nicotiana tabacum. Proc Natl Acad Sci USA 85: 372–376 (1988).Google Scholar
  11. 11.
    Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M: The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. Mol Gen Genet 217: 185–194 (1989).Google Scholar
  12. 12.
    Hudson GS, Mason JG, Holton TA, Koller B, Cox GB, Whitfeld PR, Bottomley W: A gene cluster in the spinach and pea chloroplast genomes encoding one CV1 and three CV0 subunits of the H+-ATP synthase complex and the ribosomal protein S2. J Mol Biol 196: 283–298 (1987).Google Scholar
  13. 13.
    Johnson LA, Soltis DE: matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19: 143–156 (1994).Google Scholar
  14. 14.
    Kanno A, Hirai A: A transcription map of the chloroplast genome from rice (Oryza sativa). Curr Genet 23: 166–174 (1993).Google Scholar
  15. 15.
    Kohchi T, Ogura H, Umesono K, Yamada Y, Komano T, Ozeki H, Ohyama K: Ordered processing and splicing in a polycistronic transcript in liverwort chloroplasts. Curr Genet 14: 147–154 (1988).Google Scholar
  16. 16.
    Kohchi T, Umesono K, Ogura Y, Komine Y, Nakashigashi T, Komano T, Yamada Y, Ozeki H, Ohyama K: A nicked group II intron and trans-splicing in liverwort, Marchantia polymorpha. Nucl Acids Res 16: 10025–10036 (1988).Google Scholar
  17. 17.
    Koller B, Fromm H, Galun E, Edelman M: Evidence for in vivo trans splicing of pre-mRNAs in tobacco chloroplasts. Cell 48: 111–119 (1987).Google Scholar
  18. 18.
    Kössel H, Hoch B, Maier RM, Igloi GL, Kudla J, Zeltz P, Freyer R, Neckermann K, Ruf S: RNA editing in chloroplasts of higher plants. In: Brennicke A, Kück (eds) Plant Mitochondria, pp. 93–102, VCH Chemie, Weinheim (1993).Google Scholar
  19. 19.
    Kuntz M, Camara B, Weil JH, Schantz R: The psbL gene from bell pepper (Capsicum annuum): plastid RNA editing also occurs in non-photosynthetic chromoplasts. Plant Mol Biol 20: 1185–1188 (1992).Google Scholar
  20. 20.
    Lambowitz AM, Belfort M: Introns as mobile genetic elements. Annu Rev Biochem 62: 587–622 (1993).Google Scholar
  21. 21.
    Lidholm J, Gustafsson P: A three-step model for the re-arrangement of the chloroplast trnK-psbA region of the gymnosperm Pinus contorta. Nucl Acids Res 19: 2881–2887 (1991).Google Scholar
  22. 22.
    Liere K, Link G: RNA binding activity of the matK protein encoded by the chloroplast trnK intron from mustard (Sinapis alba L.). Nucl Acids Res 23: 917–921 (1995).Google Scholar
  23. 23.
    Maier RM, Hoch B, Zeltz P, Kössel H: Internal editing of the maize chloroplast ndhA transcript restores codons for conserved amino acids. Plant Cell 4: 609–619 (1992).Google Scholar
  24. 24.
    Maier RM, Neckermann K, Hoch B, Akhmedov NB, Kössel: Identification of editing positions in the ndhB transcript from maize chloroplasts reveals sequence similarities between editing sites of chloroplasts and plant mitochondria. Nucl Acids Res 20: 6189–6194 (1992).Google Scholar
  25. 25.
    Michel F, Umesono K, Ozeki H: Comparative and functional anatomy of group II catalytic introns — a review. Gene 82: 5–30 (1989).Google Scholar
  26. 26.
    Mohr G, Perlman PS, Lambowitz AM: Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucl Acid Res. 21: 4991–4997 (1993).Google Scholar
  27. 27.
    Morden CW, Wolf KH, dePamphilis CW, Palmer JD: Plastid translation and transcription genes in a nonphotosynthetic plant: intact, missing, and pseudo genes. EMBO J 10: 3281–3288 (1991).Google Scholar
  28. 28.
    Neuhaus H, Link G: The chloroplast tRNALys (UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr Genet 11: 251–257 (1987).Google Scholar
  29. 29.
    Ohto C, Torazawa K, Tanaka M, Shinozaki K, Sugiura M: Transcription of ten ribosomal protein genes from tobacco chloroplasts: a compilation of ribosomal protein genes found in the tobacco chloroplast genome. Plant Mol Biol 11: 589–600 (1988).Google Scholar
  30. 30.
    Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).Google Scholar
  31. 31.
    Sexton TB, Jones JT, Mullet JE: Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU). Curr Genet 17: 445–454 (1990).Google Scholar
  32. 32.
    Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049 (1986).Google Scholar
  33. 33.
    Sugita M, Shinozaki K, Sugiura M: Tobacco chloroplast tRNALys (UUU) gene contains a 2.5-kilobase-pair intron: an open reading frame and a conserved boundary sequence in the intron. Proc Natl Acad Sci USA 82: 3557–3561 (1985).Google Scholar
  34. 34.
    Sugiura M: The chloroplast genome. Plant Mol Biol 19: 149–168 (1992).Google Scholar
  35. 35.
    Sugiura M, Shinozaki K, Tanaka M, Hayashida N, Wakasugi T, Matsubayashi T, Ohto C, Torazawa K, Meng BY, Hidaka T, Zaita N: Split genes and cis/trans splicing in tobacco chloroplasts. In: von Wettstein D, Chua NH (eds) Plant Molecular Biology, pp. 65–76. Plenum, New York (1987).Google Scholar
  36. 36.
    Tanaka M, Wakasugi T, Sugita M, Shinozaki K, Sugiura M: Genes for the eight ribosomal proteins are clustered on the chloroplast genome of tobacco (Nicotiana tabacum): similarity to the S 10 and spc operons of Escherichia coli. Proc Natl Acad Sci USA 83: 6030–6034 (1986).Google Scholar
  37. 37.
    Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M: Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI, and trnH and the absence of rps16. Mol Gen Genet 232: 206–214 (1992).Google Scholar
  38. 38.
    Umesono K, Inokuchi H, Shiki Y, Takeuchi M, Chang Z, Fukuzawa H, Kohchi T, Shirai H, Ohyama K, Ozeki H: Structure and organization of Marchantia polymorpha chloroplast genome II. gene organization of the large single copy region from rps12′ to atpB. J Mol Biol 203: 299–331 (1988).Google Scholar
  39. 39.
    Weglöhner W, Subramanian AR: Nucleotide sequence of a region of maize chloroplast DNA containing the 3′ end of clpP, exon 1 of rps12 and rpl20 and their cotranscription. Plant Mol Biol 18: 415–418 (1992).Google Scholar
  40. 40.
    Wolfe KH, Morden CW, Palmer JD: Ins and outs of plastid genome evolution. Curr Opin Genet Devel 1: 523–529 (1991).Google Scholar
  41. 41.
    Wolfe KH, Morden CW, Palmer JD: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648–10652 (1992).Google Scholar
  42. 42.
    Wolfe KH, Morden CW, Ems SC, Palmer JD: Rapid evolution of the plastid translational appartus in a non-photosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35: 304–317 (1992).Google Scholar
  43. 43.
    Wolfe KH, Morden CW, Palmer JD: Small single-copy region of plastid DNA in the non-photosynthetic angiosperm Epifagus virginiana contains only two genes: differences among dicots, monocots and bryophytes in gene organization at a non-bioenergetic locus. J Mol Biol 223: 94–104 (1992).Google Scholar
  44. 44.
    Wolfe KH, Katz-Downie DS, Morden CW, Palmer JD: Evolution of the plastid ribosomal RNA operon in a nongreen parasitic plant: accelerated sequence evolution, promoter deletion, and tRNA pseudogenes. Plant Mol Biol 18: 1037–1048 (1992).Google Scholar
  45. 45.
    Zaita N, Torazawa K, Shinozaki K, Sugiura M: Trans splicing in vivo: joining of transcripts from the ‘divided’ gene for ribosomal protein S12 in the chloroplasts of tobacco. FEBS Lett 210: 153–156 (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Stephanie C. Ems
    • 1
  • Clifford W. Morden
    • 1
  • Colleen K. Dixon
    • 1
  • Kenneth H. Wolfe
    • 1
  • Claude W. de Pamphilis
    • 1
  • Jeffrey D. Palmer
    • 1
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations