Skip to main content
Log in

Uniqueness theorems for displacement fields with locally finite energy in linear elastostatics

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Uniquencess theorems are proved for the fundamental boundary value problems of linear elastostatics in bodies of arbitrary shape. The displacement fields are required to have finite strain energy in bounded portions of the bodies and satisfy the principle of virtual work. For bounded bodies, the total strain energy is finite and uniquencess is proved without additional hypotheses. In particular, no restrictions other than the energy condition are placed on the field singularities that may occur at sharp edges and corners. For unbounded bodies, uniqueness can be proved as in the bounded case if the total strain energy is finite. Sufficient conditions for this are shown to be the finiteness of the strain energy in bounded portions of the body together with the growth restriction % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaadaWdraqaaiaabwhadaWg% aaWcbaGaaeyAaaqabaGccaGGOaGaaeiEaiaacMcacaqG1bWaaSbaaS% qaaiaabMgaaeqaaOGaaiikaiaabIhacaGGPaGaaeizaiaabIhacaqG% 9aGaaGimaiaacIcacaqGYbGaaiykaiaacYcacaqGYbGaeyOKH4Qaey% OhIukaleaacqGHPoWvdaWgaaadbaGaaeOCaiaacYcacqaH0oazaeqa% aaWcbeqdcqGHRiI8aaaa!5E73!\[\int_{\Omega _{{\text{r}},\delta } } {{\text{u}}_{\text{i}} ({\text{x}}){\text{u}}_{\text{i}} ({\text{x}}){\text{dx = }}0({\text{r}}),{\text{r}} \to \infty } \] on the displacement fieldu i , where Ωr, δ is the portion of the body that lies between concentric spheres with radiir andr+δ and δ>0.

This research was supported by the Air Force Office of Scientific Research. Reproduction in whole or part is permitted for any purpose of the United States Government.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.,Elliptic Boundary Value Problems, Princeton: D. Van Nostrand, 1965.

    Google Scholar 

  2. Boggio, T., Nuovo risoluzione di un problema fondamentale della teoria dell'elasticità,Atti Reale Accad. dei Lincei 16, (1907) 248–255.

    Google Scholar 

  3. Boggio, T., Determinazione della deformazione di un corpo elastico per date tensioni superficiali,Atti Reale Accad. dei Lincei 16, (1907) 441–449.

    Google Scholar 

  4. Fichera, G., Sull'esistenza e sul calcolo della soluzioni dei probelmi al contorno relativi all'equilibrio di un corpo elastico,Am. Scuola Norm. Sup. Pisa 4 (1950) 35–99.

    Google Scholar 

  5. Fichera, G.,Linear Elliptic Differential Systems and Eigenvalue Problems, Lecture Notes in Mathematics No. 8, Berlin-Heidelberg-New York: Springer, 1965.

    Google Scholar 

  6. Fredholm, I., Solution d'un problème fondamental de la thèorie de l'élasticiteé,Ark. Mat., Astr. Fysik 2 (1906) 1–8.

    Google Scholar 

  7. Green, G., On the laws of reflexion and refraction of light at the common surface of two non-crystallized media,Trans. Cambridge Phil. Soc. 7 (1839) 1–24 (reprinted in Math. Papers, 245–269).

    Google Scholar 

  8. Gobert, J., Une inégalité fondamentale de la théorie de l'élasticité,Bull. Soc. Royale Sciences Liège, 3–4 (1962) 182–191.

    Google Scholar 

  9. Gobert, J., Opérateurs matriciels de dérivation et problèmes aux limites,Mém. de la Soc. Royale des Sc. Liège, VI-2 (1961) 7–147.

    Google Scholar 

  10. Gurtin, M. E., and E. Sternberg, Theorems in linear elastostatics for exterior domains,Arch. Rational Mech. Anal. 8 (1961) 99–119.

    Google Scholar 

  11. Jeffreys, H.,Cartesian Tensors, Cambridge: Cambridge University Press, 1961.

    Google Scholar 

  12. Kirchhoff, G., Über das Gleichgewicht und die Bewegung einer unendlich dünnen elastischen Stabes,J. Reine Angew. Math. 56 (1859) 285–313.

    Google Scholar 

  13. Knops, R. J., and L. E. Payne,Uniqueness Theorems in Linear Elasticity, Berlin-Heidelberg-New York: Springer, 1971.

    Google Scholar 

  14. Knowles, J. K., and T. A. Pucik, Uniqueness for plane crack problems in linear elastostatics,J. Elasticity 3 (1973).

  15. Korn, A., Sur un problème fondamental dans la théorie de l'élasticité,C. R. Acad. Sci. Paris 145 (1907) 165–169.

    Google Scholar 

  16. Korn, A., Solution générale du problème d'équilibre dans la théorie de l'élasticité dans le cas où les efforts sont données à la surface,Ann. Fac. Sci. Univ. Toulouse 10 (1908) 165–269.

    Google Scholar 

  17. Lauricella, G., Sull'integrazione delle equazioni dell'equilibrio dei corpi elastici isotropi,Atti Reale Accad. dei Lincei 15, (1906) 426–432.

    Google Scholar 

  18. Love, A. E. H.,A Treatise on the Mathematical Theory of Elasticity, 4th Edition, New York: Dover, 1944.

    Google Scholar 

  19. Marcolongo, R., La theorie delle equazioni integrali e le sue applicazioni alla Fisica-matematica,Atti Reale Accad. de Lincei 16 (1907) 742–749.

    Google Scholar 

  20. Meixner, J., Strenge Theorie der Beugung elektromagnetischer Wellen an der vollkommen leitenden Kreisscheibe,Z. f. Naturforsch. 3a (1948) 506–518.

    Google Scholar 

  21. Schwartz, L.,Théorie des distributions, nouvelle édition, Paris: Hermann 1966.

    Google Scholar 

  22. Sneddon, I. N., and M. Lowengrub,Crack Problems in the Classical Theory of Elasticity, New York: J. Wiley and Sons, Inc., 1969.

    Google Scholar 

  23. Timoshenko, S., and J. N. Goodier,Theory of Elasticity, 2nd Ed., New York: McGraw-Hill, 1951.

    Google Scholar 

  24. Weck, N., Maxwell's boundary value problem on Riemannian manifolds with nonsmooth boundaries,J. Math. Anal. Appl. 46 (1974) 410–437.

    Article  Google Scholar 

  25. Wilcox, C. H.,The mathematical foundations of diffraction theory, in Electromagnetic Waves, Ed. by R. E. Langer, Madison: Univ. of Wisconsin Press, 1962.

    Google Scholar 

  26. Wilcox, C. H., Initial-boundary value problems for linear hyperbolic partial differential equations of the second order,Arch. Rational Mech. Anal. 10 (1962) 361–400.

    Google Scholar 

  27. Wilcox, C. H., The domain of dependence inequality for symmetric hyperbolic systems,Bull. A. M. S. 70, (1964) 149–154.

    Google Scholar 

  28. Yosida, K.,Functional Analysis, Berlin-Göttingen-Heidelberg: Springer, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Prepared under Contract No. F 49620-77-C-0053 for Air Force Office of Scientific Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilcox, C.H. Uniqueness theorems for displacement fields with locally finite energy in linear elastostatics. J Elasticity 9, 221–243 (1979). https://doi.org/10.1007/BF00041096

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041096

Keywords

Navigation