Journal of Elasticity

, Volume 7, Issue 2, pp 113–123 | Cite as

Superposition of finite deformations in Mooney-Rivlin materials

  • Carl D. Hill
  • Henry J. Petroski


Six controllable states are known to exist for all homogeneous, isotropic, incompressible, elastic bodies. It is shown that certain pairs of these controllable states may be superposed in Mooney-Rivlin materials thereby constructing new controllable states for these materials.


Elastic Body Finite Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Es gibt sechs kontrollierbare Zustände für alle homogenen, isotropischen, inkompressiblen, elastischen Körper. Es ist gezeigt dass gewisse Paare dieser kontrollierbaren Zustände geschichtet werden können in Mooney-Rivlin Materialen und dadurch neue kontrollierbare Zustände für diese Materialen geschaffen werden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ericksen, J. L., Deformations possible in every isotropic, incompressible, perfectly elastic body,Z. angew. Math. Phys., 5 (1954) 466–489.Google Scholar
  2. [2]
    Klingbeil, W. W., and R. T. Shield, On a class of solutions in plane finite elasticity,Z. angew. Math. Phys., 17 (1966) 489–511.Google Scholar
  3. [3]
    Singh, M., and A. C. Pipkin, Note on Ericksen's problem,Z. angew. Math. Phys., 16 (1965) 706–709.Google Scholar
  4. [4]
    Müller, W. C., A characterization of the five known families of solutions of Ericksen's problem.Arch. Mech. Stosow., 22 (1970) 515–521.Google Scholar
  5. [5]
    Shield, R. T., Inverse deformation results in finite elasticity.Z. angew. Math. Phys., 18 (1967) 490–500.Google Scholar
  6. [6]
    Truesdell, C., and W. Noll, The non-linear field theories of mechanics,Handbuch der Physik, S. Flügge, (ed.), Vol. 3, Springer-Verlag, Berlin 1965.Google Scholar
  7. [7]
    Carlson, D. E., and R. T. Shield, Inverse deformation results for elastic materials,Z. angew. Math. Phys., 20 (1969) 261–263.Google Scholar
  8. [8]
    Huilgol, R. R., Dislocation of a spherical sector in finite elasticity,Z. angew. Math. Mech., 48 (1968) 203.Google Scholar

Copyright information

© Noordhoff International Publishing 1977

Authors and Affiliations

  • Carl D. Hill
    • 1
  • Henry J. Petroski
    • 2
  1. 1.The University of Texas at AustinAustinUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations