Skip to main content
Log in

Reaction center and antenna processes in photosynthesis at low temperature

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Around 1960 experiments of Arnold and Clayton, Chance and Nishimura and Calvin and coworkers demonstrated that the primary photosynthetic electron transfer processes are not abolished by cooling to cryogenic temperatures. After a brief historical introduction, this review discusses some aspects of electron transfer in bacterial reaction centers and of optical spectroscopy of photosynthetic systems with emphasis on low-temperature experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(B)Chl:

(bacterio)chlorophyll

(B)Phe:

(bacterio)pheophytin

FMO:

Fenna-Matthews-Olson

LH1, LH2:

light harvesting complexes of purple bacteria

LHC II, CP47:

light harvesting complexes of Photosystem II

P, P870:

primary electron donor

RC:

reaction center

References

  • Aartsma TJ, Louwe RJW and Schellenberg P (1996) Accumulated photon echo measurements of excited state dynamics in pigment-protein complexes. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis, pp 109–122, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Arlt T, Schmidt S, Kaiser W, Lauterwasser C, Meyer M, Scheer H and Zinth W (1993) The accessory bacteriochlorophyll: A real electron carrier in primary photosynthesis. Proc Natl Acad Sci USA 90: 11757–11761

    PubMed  Google Scholar 

  • Arnold W (1965) An electron-hole picture of photosynthesis. J Phys Chem 69: 788–791

    PubMed  Google Scholar 

  • Arnold W and Clayton RK (1960) The first step in photosynthesis: Evidence for its electronic nature. Proc Natl Acad Sci USA 46: 769–776

    Google Scholar 

  • Arnold W and Sherwood HK (1957) Are chloroplasts semiconductors? Proc Natl Acad Sci USA 43: 105–114

    Google Scholar 

  • Becker M, Nagarajan V, Middendorf D, Parson WW, Martin JE and Blankenship RE (1991) Temperature dependence of the initial electron-transfer kinetics in photosynthetic reaction centers of Chloroflexus aurantiacus. Biochim Biophys Acta 1057: 299–312

    Google Scholar 

  • Bixon M and Jortner J (1986) Coupling of protein modes to electron transfer in bacterial photosynthesis. J Phys Chem 90: 3795–3800

    Google Scholar 

  • Bixon M, Jortner J and Michel-Beyerte ME (1991) On the mechanism of the primary charge separation in bacterial photosynthesis. Biochim Biophys Acta 1056: 301–315

    Google Scholar 

  • Bixon M, Jortner J and Michel-Beyerle ME (1995) A kinetic analysis of the primary charge separation in bacterial photosynthesis. Energy gaps and static heterogeneity. Chem Phys 197: 389–404

    Article  Google Scholar 

  • Breton J, Martin J-L, Petrich J, Migus A and Antonetti A (1986) The absence of a spectroscopically resolved intermediate state P+ B in bacterial photosynthesis. FEBS Lett 209: 37–43

    Article  Google Scholar 

  • Breton J, Martin J-L, Fleming GR and Lambry J-C (1988) Low temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers from photosynthetic purple bacteria. Biochemistry 27: 8276–8284

    Google Scholar 

  • Calvin M (1959) From microstructure to macrostructure and function in the photochemical apparatus. Brookhaven Symp Biol 11: 160–179

    Google Scholar 

  • Calvin M and Sogo PB (1957) Primary quantum conversion process in photosynthesis: Electron spin resonance. Science 107: 499–500

    Google Scholar 

  • Chan CK, Chen LXQ, DiMagno TJ, Hanson DK, Nance SL, Schiffer M, Norris JR and Fleming GR (1991) Initial electron transfer in photosynthetic reaction centers of Rhodobacter capsulatus mutants. Chem Phys Lett 176: 366–372

    Article  Google Scholar 

  • Chance B and Bonner WD (1963) The temperature insensitive oxidation of cytochrome f in green leaves — a primary biochemical event of photosynthesis. In: Kok B and Jagendorf AT (eds) Photosynthetic Mechanisms of Green Plants, pp 66–81. Natl Acad Sci — Natl Res Council, Washington, DC

    Google Scholar 

  • Chance B and Nishimura M (1960) On the mechanism of chlorophyll-cytochrome interaction: The temperature intensitivity of light-induced cytochrome oxidation in Chromatium. Proc Natl Acad Sci USA 46: 19–25

    Google Scholar 

  • Chang HC, Jankowiak R, Yocum CF, Picorel R, Alfonso M, Seibert M and Small GJ (1994) Exciton level structure and dynamics in the CP47 antenna complex of photosystem II. J Phys Chem 98: 7717–7724

    Google Scholar 

  • Clayton RK (1962) Recent developments in photosynthesis. Bacteriol Rev 26: 151–164

    PubMed  Google Scholar 

  • Decaro C, Visschers RW, van Grondelle R and Völker S (1994) Inter- and intraband energy transfer in LH2-antenna complexes of purple bacteria. A fluorescence line-narrowing and hole burning study. J Phys Chem 98: 10584–10590

    Google Scholar 

  • De Vault D and Chance B (1966) Studies of photosynthesis using a pulsed laser I. Temperature dependence of cytochrome oxidation rate in Chromatium. Evidence for tunneling. Biophys J 6: 825–847

    PubMed  Google Scholar 

  • DiMagno TJ, Rosenthal SJ, Xie X, Du M, Chan CK, Hanson D, Schiffer M, Norris JR and Fleming GR (1992) Recent experimental results for the initial step of bacterial photosynthesis. In: Breton J and Verméglio A (eds) The Photosynthetic Bacterial Reaction Center II, pp 209–217. Plenum Press, New York.

    Google Scholar 

  • Du M, Rosenthal SJ, Xie XL, DiMagno TJ, Schmidt M, Hanson DK, Schiffer M, Norris JR and Fleming GR (1992) Femtosecond spontaneous-emission studies of reaction centers from photysynthetic bacteria. Proc Natl Acad Sci USA 89: 8517–8521

    PubMed  Google Scholar 

  • Duysens LNM (1956) Energy transformations in photosynthesis. Ann Rev Plant Physiol 7: 25–50

    Article  Google Scholar 

  • Duysens LNM, Huiskamp WJ, Vos JJ and van der Hart JM (1956) Reversible changes in bacteriochlorophyll in purple bacteria upon illumination. Biochim Biophys Acta 19: 188–190

    Article  PubMed  Google Scholar 

  • Finkele U, Lauterwasser C, and Zinth W (1990) Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides. Biochemistry 29: 8517–8521

    PubMed  Google Scholar 

  • Fleming GR, Martin JL and Breton J (1988) Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications. Nature 333: 190–192

    Article  Google Scholar 

  • Floyd RA, Chance B and De Vault D (1971) Low temperature photoinduced reactions in green leaves and chloroplasts. Biochim Biophys Acta 226: 103–112

    PubMed  Google Scholar 

  • Freiberg A, Godik VI, Pullerits T and Timpman K (1989) Picosecond dynamics of directed excitation transfer in spectrally heterogeneous light- harvesting complexes of purple bacteria. Biochim Biophys Acta 973: 93–104

    Google Scholar 

  • Hamm P, Gray KA, Oesterhelt D, Feick R, Scheer H and Zinth W (1993) Subpicosecond emission studies of bacterial reaction centers. Biochim Biophys Acta 1142: 99–105

    Google Scholar 

  • Hess S, Feldchtein F, Babin A, Nurgaleev I, Pullerits T, Sergeev A and Sundstrom V (1993) Femtosecond energy transfer within the LH2 peripheral antenna of the photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris L1. Chem Phys Lett 216: 247–257

    Article  Google Scholar 

  • Hesselink WH and Wiersma DA (1981) Photon echoes stimulated from an accumulated grating: Theory of generation and detection. J Chem Phys 75: 4192–4197

    Article  Google Scholar 

  • Holzapfel W, finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1989) Observation of a bacteriochlorophyll- anion radical during the primary charge separation in a reaction center. Chem Phys Lett 160: 1–7

    Article  Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1990) Initial electron- transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 5168–5172

    PubMed  Google Scholar 

  • Jackson B and Silbey R (1983) Theoretical description of photochemical hole burning in soft glasses. Chem Phys Lett 99: 331–334

    Article  Google Scholar 

  • Jankowiak R, Hayes JM and Small GJ (1993) Spectral hole burning spectroscopy in amorphous molecular solids and proteins. Chem Rev 93: 1471–1502

    Google Scholar 

  • Jia YW, DiMagno TJ, Chan CK, Wang ZY, Du M, Hanson DK, Schiffer M, Norris JR, Fleming GR and Popov MS (1993) Primary charge separation in mutant reaction centers of Rhodobacter capsulatus. J Phys Chem 97: 13180–13191

    Google Scholar 

  • Johnson SG and Small GJ (1991) Excited- state structure and energytransfer dynamics of the bacteriochlorophyll a antenna complex from Prosthecochloris aestuarii. J Phys Chem 95: 471–479

    Article  Google Scholar 

  • Jortner J (1976) Temperature dependent activation energy for electron transfer between biological molecules. J Chem Phys 64: 4860–4867

    Article  Google Scholar 

  • Jortner J (1980) Dynamics of the primary events in bacterial photosynthesis. J Am Chem Soc 102: 6676–6686

    Google Scholar 

  • Kakitani T and Kakitani H (1981) A possible new mechanism of temperature dependence of electron transfer in photosynthetic systems. Biochim Biophys Acta 635: 498–514

    PubMed  Google Scholar 

  • Kennis JTM, Aartsma TJ and Amesz J (1995) Energy transfer between antenna complexes in the purple sulfur bacteria Chromatium tepidum and Chromatium vinosum. Chem Phys 194: 285–289

    Article  Google Scholar 

  • Kennis JTM, Streltsov AM, Aartsma TJ, Nozawa T and Amesz J (1996) Energy transfer and exciton coupling in isolated B800–850 complexes of the photosynthetic purple bacterium Chromatium tepidum. The effect of structural symmetry on bacteriochlorophyll excited states. J Phys Chem 100: 2438–2442

    Article  Google Scholar 

  • Kirmaier C and Holten D (1991) An assessment of the mechanism of initial electron transfer in bacterial reaction centers. Biochemistry 30: 609–613

    PubMed  Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985) Temperature and detection- wavelength dependence of the picosecond electron- transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic component. Biochim Biophys Acta 810: 33–48

    Google Scholar 

  • Kirmaier C, Gaul D, Debey R, Holten D, Schenck CC (1991) Charge separation in a reaction center incorporating bacteriochlorophyll for photoactive bacteriopheophytin. Science 251: 922–927

    PubMed  Google Scholar 

  • Kramer HJM, Pennoyer JD, van Grondelle R, Westerhuis WHJ, Niederman RA and Amesz J (1984) Low- temperature optical properties and pigment organization of the B875 light- harvesting bacteriochlorophyll- protein complex of purple bacteria. Biochim Biophys Acta 767: 335–344

    Google Scholar 

  • Kramer H, Deinum G, Gardiner AT, Cogdell RJ, Francke C, Aartsma TJ and Amesz J (1995) Energy transfer in the photosynthetic antenna system of the purple non- sulfur bacterium Rhodopseudomonas cryptolactis. Biochim Biophys Acta 1231: 33–40

    Google Scholar 

  • Lauterwasser C, Finkele U, Scheer H and Zinth W (1991) Temperature dependence of the primary electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides. Chem Phys Lett 183: 471–477

    Article  Google Scholar 

  • Louwe RJW and Aartsma TJ (1994) Optical dephasing and excited state dynamics in photosynthetic pigment- protein complexes. J Luminesc 58: 154–157

    Article  Google Scholar 

  • Louwe RJW and Aartsma TJ (1995) Excited state dynamics in photosynthetic antenna complexes studied with accumulated photon echoes. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol I, pp 363–366. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Malkin R and Bearden AJ (1971) Primary reactions of photosynthesis: Photoreduction of a bound ferredoxin at low temperature as detected by EPR spectroscopy. Proc Natl Acad Sci USA 68: 16–19

    PubMed  Google Scholar 

  • Marcus RA (1964) Chemical and electrochemical electron transfer theory. Ann Rev Phys Chem 15: 155–196

    Article  Google Scholar 

  • Marcus RA (1987) Superexchange versus an intermediate BChlmechanism in reaction centers of photosynthetic bacteria. Chem Phys Lett 133, 471–477

    Article  Google Scholar 

  • Martin J-L, Breton J, Hoff A, Migus A and Antonetti A (1986) Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: Direct electron transfer from the primary donor to the bacteriopheophytin acceptor with a time constant of 2.8±0.2 ps. Proc Natl Acad Sci USA 83: 957–961

    Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral light- harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  Google Scholar 

  • Meech SR, Hoff AJ and Wiersma DA (1986) Role of charge- transfer states in bacterial photosynthesis. Proc Natl Acad Sci 83: 9464–9468

    Google Scholar 

  • Müller MG, Griebenow K and Holzwarth AR (1992) Primary processes in isolated bacterial reaction centers from Rhodobacter sphaeroides studied by picosecond fluorescence kinetics. Chem Phys Lett 199: 465–469

    Article  Google Scholar 

  • Nagarajan V, Parson WW, Gaul D and Schenck C (1990) Effect of specific mutations of tyrosine- (M)210 on the primary photosynthetic electron- transfer process in Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 7888–7892

    PubMed  Google Scholar 

  • Nagarajan V, Parson WW Davis D and Schenck CC (1993) Kinetics and free energy gaps of electron- transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry 32: 12324–12336

    PubMed  Google Scholar 

  • Novoderezhkin VI and Razjivin AP (1993) Excitonic interactions in the light- harvesting antenna of photosynthetic purple bacteria and their influence on picosecond absorbance difference spectra. FEBS Lett 330: 6–7

    Article  Google Scholar 

  • Ogrodnik A, Kempp W, Volk M, Autmeid G and Michel-Beyerle ME (1994) Inhomogeneity of radical pair energies in photosynthetic reaction centers revealed by differences in recombination dynamics of P+H(A) when detected in delayed emission and in absorption. J Phys Chem 98: 3432–3439

    Google Scholar 

  • Parson WW (1967) Flash- induced absorbance changes in Rhodospirillum rubrum chromatophores. Biochim Biophys Acta 131: 154–172

    Google Scholar 

  • Parson WW and Cogdell RJ (1975) The primary photochemical reaction of bacterial photosynthesis. Biochim Biophys Acta 416: 105–149

    PubMed  Google Scholar 

  • Pullerits T, Monshouwer R, van Mourik F and van Grondelle R (1995) Temperature dependence of electron- vibronic spectra of photosynthetic systems. Computer simulations and comparison with experiment. Chem Phys 194: 295–408

    Article  Google Scholar 

  • Rabinowitch EI (1945, 1951, 1956) Photosynthesis and Related Processes, Vols I II(1) and II(2). Interscience Publishers, New York.

    Google Scholar 

  • Reddy NRS, Small GJ, Seibert M and Picorel R (1991) Energy transfer dynamics of the B800-B850 antenna complex of Rhodobacter sphaeroides — a hole burning study. Chem Phys Lett 181: 391–399

    Article  Google Scholar 

  • Reddy NRS, Lyle PA and Small GJ (1992a) Applications of spectral hole burning spectroscopies to antenna and reaction center complexes. Photosynth Res 31: 167–194

    Google Scholar 

  • Reddy NRS, Picorel R and Small GJ (1992b) B896 and B870 components of the Rhodobacter sphaeroides antenna — a hole burning study. J Phys Chem 96: 6458–6464

    Google Scholar 

  • Reddy NRS, Cogdell RJ, Zhao L and Smali GJ (1993) Nonphotochemical hole burning of the B800-B850 antenna complex of Rhodopseudomonas acidophila. Photochem Photobiol 57: 35–39

    Google Scholar 

  • Reddy NRS, van Amerongen H, Kwa SLS, van Grondelle R and Small GJ (1994) Low- energy exciton level structure and dynamics in light harvesting complex II trimers from the Chl a/b antenna complex of photosystem II. J Phys Chem 98: 4729–4735

    Google Scholar 

  • Schellenberg P, Louwe RJW, Shochat S, Gast P, Hoff AJ and Aartsma TJ (1995) Early steps in photosynthetic reaction centers probed by accumulated photon echo measurements. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol I, pp 819–822. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Schmidt S, Arlt T, Hamm P, Huber H, Nagele T, Wachtveitl J, Meyer M, Scheer H, and Zinth W (1994) Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on inodified bacterial reaction centers. Chem Phys Lett 223: 116–120

    Article  Google Scholar 

  • Shochat S, Arlt T, Francke C, Gast P, van Noort PI, Otte SCM, Schelvis JPM, Schmidt S, Vijgenboom E, Vrieze J, Zinth W and Hoff AJ (1994) Spectroscopic characterization of reaction centers of the (M) Y210W mutant of the photosynthetic bacterium Rhodobacter sphaeroides. Photosynth Res 40: 55–66

    Google Scholar 

  • Shreve AP, Trautman JK, Frank HA, Owens TG and Albrecht AC (1991) Femtosecond energy transfer processes in the B800–850 light- harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta 1058: 280–288

    PubMed  Google Scholar 

  • Sogo PB, Jost M and Calvin M (1959) Evidence for free radical production in photosynthetic systems. Radiation Res (Suppl) 1: 511–518

    Google Scholar 

  • van de Meent EJ, Kobayashi M, Erkelens C, van Veelen PA and Amesz J (1991) Identification of 81- hydroxychlorophyll a as a functional reaction center pigment in heliobacteria. Biochim Biophys Acta 1058: 356–362

    Google Scholar 

  • van der Laan H, Schmidt Th, Visschers RW, Visscher KJ, van Grondelle R and Völker SL (1990) Energy transfer in the B800–850 complex of purple bacteria Rhodobacter sphaeroides: A study by spectral hole burning. Chem Phys Lett 170: 231–238

    Article  Google Scholar 

  • van der Laan H, Decaro C, Schmidt T, Visschers RW, van Grondelle R, Fowler GJS, Hunter CN and Völker S (1993) Excited state dynamics of mutated antenna complexes of purple bacteria studied by hole burning. Chem Phys Lett 212: 569–580

    Article  Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T and Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187: 1–65

    Google Scholar 

  • van Kan PJM (1991) Energy transfer and charge separation in photosynthetic systems at low temperature. Doctoral Thesis, University of Leiden.

  • van Kan PJM, Aartsma TJ and Amesz J (1989) Primary photosynthetic processes in Heliobacterium chlorum at 15 K. Photosynth Res 22: 61–68

    Google Scholar 

  • van Mourik F, Visschers RW and van Grondelle R (1992) Energy transfer and aggregate size effects in the homogeneously broadened core light- harvesting complex of Rhodobacter sphaeroides. Chem Phys Lett 193: 1–7

    Article  Google Scholar 

  • van Noort PI (1994) Energy transfer and primary photochemistry in photosynthetic bacteria. A picosecond time- resolved study. Doctoral Thesis, University of Leiden.

  • Völker S (1989) Spectral hole burning in crystalline and amorphous organic solids. Optical relaxation processes at low temperature. In: Fünfschilling J (ed) Relaxation Processes in Molecular Excited States, pp 113–242. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Vos MH, Lambry J-C, Robles SJ, You van DC, Breton J and Martin J-L (1992) Femtosecond spectral evolution of the excited state of bacterial reaction centers at 10 K. Proc Natl Acad Sci USA 89: 613–617

    PubMed  Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961) Oxidized cytochrome and chlorophyll in photosynthesis. Nature 192: 967–969

    PubMed  Google Scholar 

  • Woodbury NW, Peloquin JM, Alden RG, Lin X, Lin S, Taguchi AKW, Wiliams JC and Allen JP (1994) Relationship between thermodynamics and mechanism during photoinduced charge separation in reaction centers from Rhodobacter sphaeroides. Biochemistry 33: 8101–8112

    PubMed  Google Scholar 

  • woodbury NW, Lin S, Lin X, Peloquin JM, Taguchi AKW, Williams JAC and Allen JP (1995) The role of reaction center excited state evolution during charge separation in a Rb. sphaeroides mutant with an intial electron donor midpoint potential 260 mV above wild type. Chem Phys 197: 405–422

    Article  Google Scholar 

  • Zhang FG, van Grondelle R and Sundstrom V (1992) Pathways of energy flow throught the light- harvesting antenna of the photosynthetic purple bacterium Rhodobacter sphaeroides. Biophys J 61: 911–920

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aartsma, T.J., Amesz, J. Reaction center and antenna processes in photosynthesis at low temperature. Photosynth Res 48, 99–106 (1996). https://doi.org/10.1007/BF00041000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00041000

Key words

Navigation