Skip to main content
Log in

The purple bacterial photosynthetic unit

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Now is a very exciting time for researchers in the area of the primary reactions of purple bacterial photosynthesis. Detailed structural information is now available for not only the reaction center (Lancaster et al. 1995, in: Blankenship RE et al. (eds) Anoxygenic Photosynthetic Bacteria, pp 503–526), but also LH2 from Rhodopseudomonas acidophila (McDermott et al. 1995, Nature 374: 517–521) and LH1 from Rhodospirillum rubrum (Karrasch et al. 1995. EMBO J 14: 631–638). These structures can now be integrated to produce models of the complete photosynthetic unit (PSU) (Papiz et al., 1996, Trends Plant Sci, in press), which opens the door to a much more detailed understanding of the energy transfer events occurring within the PSU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bchl:

bacteriochlorophyll

LH:

light-harvesting

PSU:

photosynthetic unit

References

  • Aagaard J and Sistrom WR (1972) Control of synthesis of reaction center bacteriochlorophylls in photosynthetic bacteria. Photochem Photobiol 15: 209–225

    PubMed  Google Scholar 

  • Babst M, Albrecht H, Wegmann I, Brunisholz R and Zuber H (1991) Single amino acid substitutions in the B870 alpha and beta light-harvesting polypeptides of Rhodobacter capsulatus. Structural and spectral effects. Eur J Biochem 202: 277–284

    PubMed  Google Scholar 

  • Barz WP, Francia F, Venturoli G, Melandri BA, Verméglio A and Oesterhelt D (1995a) Role of puf X protein in photosynthetic growth of Rhodobacter sphaeroides. 1. Puf X is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions. Biochemistry 34: 15235–15247

    PubMed  Google Scholar 

  • Barz WP, Verméglio A, Francia F, Venturoli G, Melandri BA and Oesterhelt D (1995b) Role of the Puf X protein in photosynthetic growth of Rhodobacter sphaeroides. 2. Puf X is required for efficient ubiquinone/ubiquinol exchange between the reaction center Q(B) site and the cytochrome bc1 complex. Biochemistry 34: 15248–15258

    PubMed  Google Scholar 

  • Bauer CE (1995) Regulation of photosynthesis gene expression. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1221–1234. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Bylina EJ, Robles SJ and Youvan DC (1988) Directed mutations affecting the putative bacteriochlorophyll-binding sites in the light-harvesting-I antenna of Rhodobacter capsulatus. Israel J Chem 28: 73–78

    Google Scholar 

  • Cohen-Bazire G, Sistrom WR and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulphur purple bacteria. J Cell Comp Physiol 49: 25–68

    Google Scholar 

  • Dawkins DJ, Ferguson LA and Cogdell RJ (1988) The structure of the purple bacteria photosynthetic unit. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 115–127. Walter de Gruyter, Berlin

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature, 318: 618–624

    Google Scholar 

  • Emerson R and Arnold WA (1932) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205

    Article  Google Scholar 

  • Farchaus JW, Grunberg H and Oesterhelt D (1990) Complementation of a reaction center-deficient Rhodobacter sphaeroides pufLMX deletion strain in trans with pufBALM does not restore the photosynthesis-positive phenotype. J Bacteriol 172: 977–985

    PubMed  Google Scholar 

  • Farchaus JW, Barz WP, Grunberg H and Oesterhelt D (1992) Studies on the expression of the puf X polypeptide and its requirement for photoheterotrophic growth in Rhodobacter sphaeroides. EMBO J 11: 2779–2788

    PubMed  Google Scholar 

  • Fowler GJS, Crielaard W, Visschers RW, van Grondelle R and Hunter CN (1993) Site-directed mutagenesis of the LH2 light-harvesting complex of Rhodobacter sphaeroides-changing beta-lys23 to gln results in a shift in the 850 nm absorption peak. Photochem and Photobiol 57: 2–6

    Google Scholar 

  • Francke C and Amesz J (1995) The size of the photosynthetic unit in purple bacteria. Photosynth Res 46: 347–352

    Google Scholar 

  • Gall A (1995) Purification, characterisation and crystallisation from a range of Rhodospirillineae pigment protein complexes. PhD Thesis, Univ Glasgow, UK

    Google Scholar 

  • Gardiner AT, MacKensie RC, Barrett SJ, Kaiser K and Cogdell RJ (1992) The genes for the peripheral antenna complex from Rhodopseudomonas acidophila 7050 form a multigene family. In: Murata N (ed) Research in Photosynthesis, Vol 1, pp 77–80. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Hawthornthwaite AM and Cogdell RJ (1991) Bacteriochlorophyll binding proteins. In: Scheer H (ed) Chlorophylls, pp 493–528. CRC Press, Boca Raton

    Google Scholar 

  • Hess S, Chachisvilis M, Jones MR, Hunter CN and Sundström V (1995) Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Proc Natl Acad Sci USA 92: 12333–12337

    PubMed  Google Scholar 

  • Hunter CN (1995) Genetic manipulation of the antenna complexes of purple bacteria. In: Blankenship RE, madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 473–501. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Jay F, Lambillotte M and Muhlethaler K (1983) Localisation of Rhodopseudomonas viridis reaction center and light-harvesting protein using ferritin-antibody labelling. Eur J Cell Biol 30: 1–8

    PubMed  Google Scholar 

  • Jones TA, Zou JY, Cowan SW and Kjeldgaard (1991) Improved methods for building protein models in electron density maps and the location of errors in these maps. Acta Cryst A 47: 110–119

    Article  Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits. EMBO J 14: 631–638

    PubMed  Google Scholar 

  • Kraulis PJ (1991) Molscript-a program to produce both detailed and schematic plots of protein structures. J Appl Cryst 24: 946–950

    Article  Google Scholar 

  • Lancaster CRD, Ermler U and Michel H (1995) The structures of photosynthetic reaction centers from purple bacteria as revealed by x-ray crystallography. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 503–526. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Lilburn TG, Haith CE, Prince RC and Beatty JT (1992) Pleiotropic effects of pufX gene deletion on the structure and function of the photosynthetic apparatus of Rhodobacter capsulatus. Biochim Biophys Acta 1100: 160–170

    PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  Google Scholar 

  • McGlynn P, Hunter CN and Jones MR (1994) The Rhodobacter sphaeroides Puf X protein is not required for photosynthetic competence in the absence of a light harvesting system. FEBS Lett 349: 349–353

    Article  PubMed  Google Scholar 

  • McGlynn P, Westerhuis WHJ, Jones MR and Hunter CN (1996) Consequences for the organization of reaction center-light harvesting antenna I (LH1) core complexes of Rhodobacter sphaeroides arising from deletion of amino acid residues from the C terminus of the LH1 α polypeptides. J Biol Chem 271: 3285–3292

    Article  PubMed  Google Scholar 

  • Meckenstock R, Krusche K, Staehelin LA, Cyrklaff M, Brunisholz RA and Zuber H (1994) The six fold symmetry of the B880 light-harvesting membranes of Rhodopseudomonas marina. Biol Chem Hoppe-Seyler 375: 429–438

    PubMed  Google Scholar 

  • Miller KR (1982) Three dimensional structure of a photosynthetic membrane. Nature 300: 53–55

    Google Scholar 

  • Olsen JD and Hunter CN (1994) Protein structure modelling of the bacterial light-harvesting complex. Photochem Photobiol 60: 521–535

    PubMed  Google Scholar 

  • Olsen JD, Sockalingum GD, Robert B and Hunter CN (1994) Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 7124–7128

    PubMed  Google Scholar 

  • Papiz MZ, Prince SM, Hawthornthwaite-Lawless AM, McDermott G, Freer AA, Isaacs NW and Cogdell RJ (1996) A model for the photosynthetic apparatus of purple bacteria. Trends Plant Sci 1: 198–206

    Article  Google Scholar 

  • Robinson GW (1967) Excitation transfer and trapping in photosynthesis. Brookhaven Symp Biol 19: 16–48

    Google Scholar 

  • Stark W, Kuhlbrandt W, Wildhaber I, Wehrli E and Muhlethaler K (1984) The structure of the photoreceptor unit of Rhodopseudomonas viridis. EMBO J 3: 777–783

    Google Scholar 

  • Sundström V and van Grondelle R (1995) Kinetics of excitation transfer and trapping in purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 349–372. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Tadros MH, Katsiou E, Hoon MA, Yurkova N and Ramji DP (1991) Cloning of a new antenna gene cluster and expression analysis of the antenna gene family of Rhodopseudomonas palustris. Eur J Biochem 217: 867–875

    Google Scholar 

  • van Grondelle R, Hunter CN, Bakker JGC and Kramer HJM (1983) Size and structure of antenna complexes of photosynthetic bacteria as studied by singlet-singlet quenching of the bacteriochlorophyll fluorescence yield. Biochim Biophys Acta 723: 30–36

    Google Scholar 

  • Williams JC and Taguchi AKW (1995) Genetic manipulation of purple photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1029–1065. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Woodbury NW and Allen JP (1995) The pathway, kinetics and thermodynamics of electron transport in wild-type and mutant reaction centers of purple non-sulphur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria pp 527–557. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: Protein-cofactor (bacteriochlorophyll, bacteriopheophytin and carotenoid) interactions. Proc Natl Acad Sci 85: 7993–7997

    PubMed  Google Scholar 

  • Zuber H and Brunisholz RA (1991) Structure and function of antenna polypeptides and chlorophyll protein complexes: principles and variability. In: Scheer H (ed) Chlorophylls, pp 627–703. CRC Press, Boca Raton

    Google Scholar 

  • Zuber H and Cogdell RJ (1995) The structure and organisation of purple bacterial antenna complexes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 315–348. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cogdell, R.J., Fyfe, P.K., Barrett, S.J. et al. The purple bacterial photosynthetic unit. Photosynth Res 48, 55–63 (1996). https://doi.org/10.1007/BF00040996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040996

Key words

Navigation