Journal of Elasticity

, Volume 36, Issue 2, pp 99–116 | Cite as

Stress functions for continua with couple stresses

  • Yu. Z. Povstenko
Article

Abstract

In this paper new representations of stresses and couple stresses in terms of stress functions are obtained for three- and two-dimensional Cosserat continua using the motor analysis, and the particular cases of these representations are compared with known results. As an application of the introduced stress functions we consider several examples of determining the stress and couple stress fields due to discrete dislocations and disclinations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu.A. Krutkov, Stress-Functions Tensor and General Solutions in Statics of the Theory of Elasticity. Moscow: Ed. Acad. Sci. USSR (1949). (In Russian).Google Scholar
  2. 2.
    V.I. Bloch, Theory of Elasticity. Kharkov: Ed. Kharkov University (1964) (In Russian).Google Scholar
  3. 3.
    E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen. Berlin: Springer (1958).Google Scholar
  4. 4.
    R. de Wit, Linear theory of static disclinations. In: J.A. Simmons, R. de Wit and R. Bullough (eds), Fundamental Aspects of Dislocation Theory, Vol. 1. Washington: U.S. Government Printing Office (1970) pp. 651–673.Google Scholar
  5. 5.
    Yu.Z. Povstenko, Analysis of motor fields in Cosserat continua of two and one dimensions and its applications. Z. angew. Math. Mech. 66 (1986) 505–507.Google Scholar
  6. 6.
    A.L. Gol'denveizer, Theory of Elastic Thin Shells. Moscow: Nauka (1976). (In Russian).Google Scholar
  7. 7.
    S. Minagawa, On some generalized features of the theory of stress-function space with reference to the problem of stresses in a curved membrane. In: K. Kondo (ed.) RAAG Memoirs, Vol. IV. Tokyo: Gakujutsubunken Fukyukai (1968) pp. 99–110.Google Scholar
  8. 8.
    S. Minagawa, Stress functions and stress-function space of non-metric connection for 3-dimensional micropolar elastostatics. Int. J. Engng. Sci. 19 (1981) 1705–1710.Google Scholar
  9. 9.
    C. Truesdell, Invariant and complete stress functions for general continua. Arch. Rat. Mech. Anal. 4 (1959) 1–29.Google Scholar
  10. 10.
    M.E. Gurtin, The linear theory of elasticity. In: S. Flügge (ed.), Handbuch der Physik, Vol. Via/2 (ed. by C. Truesdell). Berlin: Springer (1972) pp. 1–295.Google Scholar
  11. 11.
    G. Rieder, Topologische Fragen in der Theorie der Spannungsfunktionen. Abh. Braunschweig. Wiss. Ges. 12 (1960) 4–65.Google Scholar
  12. 12.
    M.E. Gurtin, A generalization of the Beltrami stress functions in continuum mechanics. Arch. Rat. Mech. Anal. 13 (1963) 321–329.Google Scholar
  13. 13.
    K. Hackl and U. Zastrow, On the existence, uniqueness and completeness of displacement and stress functions in linear elasticity. J. Elast. 19 (1988) 3–23.Google Scholar
  14. 14.
    W. Günther, Zur Statik und Kinematik des Cosseratsche Kontinuums. Abh. Braunschweig. Wiss. Ges. 10 (1958) 195–213.Google Scholar
  15. 15.
    D.E. Carlson, On Günther's stress functions for couple stresses. Quart. Appl. Math. 25 (1967) 139–146.Google Scholar
  16. 16.
    H. Schaefer, Die Spannungsfunktionen eines Kontinuums mit Momentenspannungen. Bull. Acad. Polon. Sci. Sér. sci. techn. 15 (1967) 71–81.Google Scholar
  17. 17.
    D.E. Carlson, Stress functions for couple and dipolar stresses. Quart. Appl. Math. 24 (1966) 29–35.Google Scholar
  18. 18.
    D.E. Carlson, On general solution of the stress equations of equilibrium for a Cosserat continuum. J. Appl. Mech. 34 (1967) 245–246.Google Scholar
  19. 19.
    R.D. Mindlin, Influence of couple-stresses on stress concentrations. Exp. Mech. 3 (1963) 1–7.Google Scholar
  20. 20.
    W. Nowacki, On discrete dislocations in micropolar elasticity. Arch. Mech. 26 (1974) 3–11.Google Scholar
  21. 21.
    A.I. Lur'e, General theory of thin elastic shells. Appl. Math. Mech. (PMM) 4 (1940) 7–32. (In Russian).Google Scholar
  22. 22.
    A.L. Gol'denveizer, Equations of the theory of thin shells. Appl. Math. Mech. (PMM) 4 (1940) 35–42. (In Russian).Google Scholar
  23. 23.
    H.L. Langhaar, An invariant membrane stress function for shells. J. Appl. Mech. 20 (1953) 178–182.Google Scholar
  24. 24.
    H. Zorski, General solutions of the conservation equations in curved spaces. Bull. Acad. Polon. Sci. Sér. sci. techn. 7 (1959) 567–571.Google Scholar
  25. 25.
    A. Libai, Invariant stress and deformation functions for doubly curved shells. J. Appl. Mech. 34 (1967) 43–48.Google Scholar
  26. 26.
    K.F. Chernykh, Linear Theory of Shells, Vol. 2. Leningrad: Ed. Leningrad Univ. (1964). (In Russian).Google Scholar
  27. 27.
    Ya.S. Podstrigach and L.P. Besedina, On relation between temperature stresses and dislocation stresses in shells of revolution. Appl. Mech. 6 9 (1970) 3–8. (In Russian).Google Scholar
  28. 28.
    R. Mises, Motorrechnung, ein neues Hilfsmittel der Mechanik. Z. angew. Math. Mech. 4 (1924) 155–181.Google Scholar
  29. 29.
    R. Mises, Anwendungen der Motorrechnung. Z. angew. Math. Mech. 4 (1924) 192–213.Google Scholar
  30. 30.
    P.M. Osipov, Ostrogradsky theorem in motor calculus. Doklady Acad. Sci. Ukrainian SSR 8 (1960) 1019–1023. (In Ukrainian).Google Scholar
  31. 31.
    P.M. Osipov, Stokes theorem and Green formulae in motor calculus. Doklady Acad. Sci. Ukrainian SSR 10 (1960) 1334–1339. (In Ukrainian).Google Scholar
  32. 32.
    H. Schaefer, Analysis der Motorfelder im Cosserat-Kontinuum. Z. angew. Math. Mech. 47 (1967) 319–328.Google Scholar
  33. 33.
    S. Kessel, Die Spannungsfunktionen des Cosserat-Kontinuums. Z. angew. Math. Mech. 47 (1967) 329–336.Google Scholar
  34. 34.
    S. Kessel, Stress functions and loading singularities for the infinitely extended, linear elasticisotropic Cosserat continuum. In: E. Kröner (ed.), Mechanics of Generalized Continua. Berlin: Springer (1968) pp. 114–119.Google Scholar
  35. 35.
    H. Schaefer, Eine Feldtheorie der Versetzungen im Cosserat-Kontinuum. Z. angew. Math. Phys. 20 (1969) 891–899.Google Scholar
  36. 36.
    G. Kluge, Uber den Zusammenhang der allgemeinen Versetzungstheorie mit dem Cosserat-Kontinuum. Wiss. Z. Techn. Hochsch. Magdeburg 13 (1969) 377–380.Google Scholar
  37. 37.
    H. Schaefer, Maxwell-Gleichungen bewegter Versetzungen im Cosserat-Kontinuum. Abh. Braunschweig. Wiss. Ges. 21 (1970) 480–486.Google Scholar
  38. 38.
    F.M. Dimentberg, Theory of Screws and its Applications. Moscow: Nauka (1978). (In Russian).Google Scholar
  39. 39.
    V.A. Likhachev and V.A. Shudegov, Theory of strongly interacting ensembles of defects in motor recording (a review). Metallophysics 2, 4 (1980) 3–15; 2, 5 (1980) 3–12; 4, 1 (1982) 3–7. (In Russian).Google Scholar
  40. 40.
    V.E. Panin, V.A. Likhachev, and Yu.V. Griniaev, Structural Levels of Strain in Solids. Novosibirsk: Nauka (1985). (In Russian).Google Scholar
  41. 41.
    V.A. Likhachev, A.E. Volkov, and V.E. Shudegov, Continuum Theory of Defects. Leningrad: Ed. Leningrad Univ. (1986). (In Russian).Google Scholar
  42. 42.
    V.A. Likhachev and V.E. Shudegov, Continuum theory of defects in motor recording. Leningrad: The paper deposited in VINITI No 2076-80 (1980). (In Russian).Google Scholar
  43. 43.
    H. Schaefer, Die Spannungsfunktionen des dreidimensionalen Kontinuums und des elastichen Körpers. Z. angew. Math. Mech. 33 (1953) 356–362.Google Scholar
  44. 44.
    K. Kondo, Periphractic construction of elasticity and plasticity on Gurtin's generalized stress functions and the criterion for yielding. Int. J. Engng. Sci. 23 (1985) 79–99.Google Scholar
  45. 45.
    V.A. Pal'mov, The plane problem of non-symmetrical theory of elasticity. Appl. Math. Mech. (PMM) 28 (1964) 1117–1120. (In Russian).Google Scholar
  46. 46.
    G.N. Savin, Fundamentals of Plane Problem of Elasticity with Couple Stresses. Kiev: Ed. Kiev Univ. (1965). (In Russian).Google Scholar
  47. 47.
    W. Nowacki, The “second” plane problem of microplar elasticity. Bull. Acad. Polon. Sci. Sér. sci. techn. 18 (1970) 899–906.Google Scholar
  48. 48.
    D.E. Carlson, Stress functions for plane problems with couple stresses. Z. angew. Math. Phys. 17 (1966) 789–792.Google Scholar
  49. 49.
    M. Suchar, Stress functions for the “second” plane problem of micropolar elasticity. Bull. Acad. Polon. Sci. Sér. sci. techn. 20 (1972) 831–840.Google Scholar
  50. 50.
    W. Nowacki and W.K. Nowacki, The axially symmetrical Lamb's problem in a semi-infinite micropolar elastic solid. Proc. Vibr. Probl. 10 (1969) 97–112.Google Scholar
  51. 51.
    J. Dyszlewicz, Stress functions for a second axially-symmetric problem of micropolar elastostatics. Bull. Acad. Polon. Sci. Sér. Sci. techn. 22 (1974) 847–856.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Yu. Z. Povstenko
    • 1
  1. 1.Pidstryhach Institute of Applied Problems of Mechanics and MathematicsUkrainian Academy of SciencesLvivUkraine

Personalised recommendations