Skip to main content
Log in

Dynamics of fracture mirror boundary formation in glass

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The formation of fracture mirrors was investigated for specimens of a soda-lime-silicate glass tested in tension, four point flexure, and three point flexure. The dimensions of the mirror region are dependent on the macrostress state of the specimen at fracture. An energy balance approach, incorporating a kinetic term is applied to explain mirror formation and the macrostress state differences.

Résumé

On étudie la formation d'une configuration en miroir dans une rupture, à l'aide d'éprouvettes de verre de silicate-soude soumises à traction et à flexion sur quatre appuis et sur trois appuis. Les dimensions de la zone en miroir dépendent de l'état des macrocontraintes dans l'éprouvette au moment de la rupture.

Une approche par équilibre d'énergie, qui incorpore un terme cinéti\`que, est utilisé pour expliquer la formation en miroir et les différences dans l'état des macrocontraintes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Smekal, Journal of the Society of Glass Tech., 20 (1936) 423–455.

    Google Scholar 

  2. N. Terao, Journal of the Phys. Society of Japan, 8 (1953) 545–549.

    Google Scholar 

  3. E. B. Shand, Journal of the American Ceramic Society, 37 (1954) 559–572.

    Google Scholar 

  4. W. C. Levengood, Journal of Applied Physics, 29 (1958) 820–826.

    Google Scholar 

  5. E. B. Shand, Journal of the American Ceramic Society, 42 (1959) 474–477.

    Google Scholar 

  6. M. J. Kerper and T. G. Scuderi, Bulletin of the American Ceramic Society, 43 (1964) 622–625.

    Google Scholar 

  7. J. W. Johnson and D. G. Holloway, Philosophical Magazine, 14 (1966) 731–743.

    Google Scholar 

  8. J. Congleton and N. J. Petch, Philosophical Magazine, 16 (1967) 749–760.

    Google Scholar 

  9. N. Shinkai, Japanese Journal of Applied Physics, 14 (1975) 147–148.

    Google Scholar 

  10. H. P. Kirchner, R. M. Gruver and W. A. Sotter, Philosophical Magazine, 33 (1976) 775–780.

    Google Scholar 

  11. L. Orr, Materials Research and Standards, 12 (1972) 21–27.

    Google Scholar 

  12. D. A. Krohn and D. P. H. Hasselman, Journal of the American Ceramic Society, 54 (1971) 54.

    Google Scholar 

  13. J. R. Varner and H. J. Oel, Glass Tech. Ber., 48 (1975) 73–78.

    Google Scholar 

  14. J. J. Mecholosky, S. W. Freiman, and R. W. Rice, Journal of Material Science, 11 (1976) 1310–1319.

    Google Scholar 

  15. E. B. Shand, Glass Ind., 48 (1967) 190–194.

    Google Scholar 

  16. H. P. Kirchner and W. A. Sotter,Tech. Rpt., 1, ONR Cont. N00014-74-C-0241 (1974).

  17. N. Shinkai and M. Hara, Rpt. Res. Lab. Asahi Glass Co. Ltd., 19 (1969) 73–84.

    Google Scholar 

  18. M. J. Kerper and T. G. Scuderi, Bulletin of the American Ceramic Society, 44 (1965) 953–955.

    Google Scholar 

  19. J. J. Mecholosky, R. W. Rice, and S. W. Freiman, Journal of the American Ceramic Society, 57 (1974) 440–443.

    Google Scholar 

  20. H. P. Kirchner, R. M. Gruver, and W. A. Sotter, Journal of the American Ceramic Society, 58 (1975) 188–191.

    Google Scholar 

  21. G. C. Sih, editor, Dynamic Crack Propagation, Noordhoff Int. Publ., Leyden (1973).

    Google Scholar 

  22. K. R. McKinney, Journal of the American Ceramic Society, 56 (1973) 225.

    Google Scholar 

  23. N. F. Mott, Engineering, 165 (1948) 16–19.

    Google Scholar 

  24. R. E. Tressler and R. L. Crane,Adv. Mat., Comp. and Carbon, Cahners Pub. (1973) 59–68.

  25. S. M. Wiederhorn, Journal of the American Ceramic Society, 52 (1969) 97–105.

    Google Scholar 

  26. E. H. Yoffee, Philosophical Magazine, 42 (1951) 739–751.

    Google Scholar 

  27. A. B. J. Clark and G. R. Irwin, Experimental Mechanics, 23 (1966) 321–330.

    Google Scholar 

  28. N. J. Petch,Fracture, H. Liebowitz, ed., 1, Academic Press (1968) 351–393.

  29. D. K. Roberts and A. A. Wells, Engineering, 178 (1954) 820–821.

    Google Scholar 

  30. S. Bateson, Physics and Chemistry of Glass, 1 (1960) 139–142.

    Google Scholar 

  31. J. P. Berry, Journal of Mechanics and Physics of Solids, 8 (1960) 194–216.

    Article  Google Scholar 

  32. O. L. Anderson,Fracture, B. L. Averbach,et al., editors, MIT Press (1959) 331–353.

  33. B. R. Lawn and T. R. Wilshaw,Fracture of Brittle Solids, Cambridge Univ. Press (1975), 91–108.

  34. A. S. Kobayashi, S. Mall, and W. B. Bradley,ONR Rpt., 22, Cont. N0014-67-A-0103-400 (1975).

  35. J. Congleton and B. K. Denton,Report for U.S. Army European Research Office, Cont. No. DAJA37-73C-3885, (1975).

  36. S. R. Anthony, J. P. Chubb, and J. Congleton, Philosophical Magazine, 22 (1970) 1210–1206.

    Google Scholar 

  37. F. Kerkhof, Journal of the American Ceramic Society, 57 (1974) 3–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Latif, A.I.A., Bradt, R.C. & Tressler, R.E. Dynamics of fracture mirror boundary formation in glass. Int J Fract 13, 349–359 (1977). https://doi.org/10.1007/BF00040149

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040149

Keywords

Navigation