Skip to main content
Log in

Crack-particle interaction in a two-phase composite Part II: crack deflection

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A numerical analysis has been performed on a system involving a crack near a single particle with the objective of finding a general relation for the size and shape of the elastic, crack-particle interaction zone which necessarily exists near particles in two-phase composites. In order to quantify the zone boundaries, various crack-particle geometries were modelled and a single characterization parameter was developed. Results show that a zone in which the energy release rate and direction of crack propagation are significantly affected can be simply defined near a particle as a function of the crack-particle geometry and elastic mismatch. A wide range of elastic combinations was examined with the result that for any significant crack deflection to occur away from the particle the magnitude of the first Dundurs parameter, |α|, must be greater than ∼ 0.2. Numberical results show good agreement with experimental fatigue crack path data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Porter and A.H. Heuer, Journal of the American Ceramic Society 60 (1977) 183.

    Article  Google Scholar 

  2. T.K. Gupta, F.F. Lange and J.H. Bechtold, Journal of Material Science 13 (1978) 1464.

    Article  Google Scholar 

  3. F.F. Lange, in Proceedings of 3rd International Conference on Mechanical Behavior of Materials, Vol 3, K.J. Miller and R.F. Smith (eds), Pergamon Press (1980) 45.

  4. Science and Technology of Zirconia, II, M. Ruhle, N. Claussen and A. Heuer (eds) (1982).

  5. A.G. Evans, Journal of Material Science 9 (1974) 1145–52.

    Article  Google Scholar 

  6. W. Kreher and R. Janssen, Journal of European Ceramic Society 10 (1992) 167–73.

    Article  Google Scholar 

  7. P. Lipetzky and W. Kreher, Mechanics of Materials 20 (1995) 225–240.

    Article  Google Scholar 

  8. M. Taya, S. Hayashi, A. Kobayashi and H. Yoon, Journal of the American Ceramic Society 73 (1990) 1382–91.

    Article  Google Scholar 

  9. D. Baril, S. Tremblay and M. Fiset, Journal of Material Science 28 (1993) 5486–94.

    Article  Google Scholar 

  10. R. Brett and P. Bowen, Composites 24 (1993) 177–83.

    Article  Google Scholar 

  11. P.F. Becher and G.C. Wei, Journal of American Ceramic Society 67 (1984) C267-C271.

    Article  Google Scholar 

  12. F.F. Lange, Fracture Mechanics of Ceramics, Vol 4, R.C. Brandt, D.P. Hasselman, and F.F. Lange (eds), Plenum Press (1978).

  13. B. Budiansky, J.W. Hutchinson and A.G. Evans, Journal of the Mechanics and Physics of Solids 34 (1986) 167–189.

    Article  Google Scholar 

  14. V.D. Krstic, P.S. Nicholson and R.G. Hoagland, Journal of the American Ceramic Society 64 (1981) 499–504.

    Article  Google Scholar 

  15. V.D. Krstic, Philosophical Magazine A, 48 (1983) 695–708.

    Article  Google Scholar 

  16. L.S. Sigl, P.A. Mataga, B.J. Dalgleish, R.M. McMeeking and A.G. Evans, Acta Metallurgica 36 (1988) 945–953.

    Article  Google Scholar 

  17. M. Bannister, H. Shercliff, G. Bao, F. Zok and M. Ashby, Acta Metallurgica 7 (1992) 1531–37.

    Article  Google Scholar 

  18. A. Rubinstein, International Journal of Fracture 47 (1991) 291–305.

    Article  Google Scholar 

  19. A. Chudnovsky, K. Chaoui and A. Moet, Journal of Materials Science Letters 6 (1987) 1033–38.

    Article  Google Scholar 

  20. Z. Knesl, Acta Technica CSAV 5 (1987) 603–20.

    Google Scholar 

  21. F. Erdogan, G.D. Gupta and M. Ratwani, Journal of Applied Mechanics 41 (1974) 1007–1013.

    Article  Google Scholar 

  22. S.A. Meguid, Engineering Fracture Mechanics, Elsevier, NY (1989) 158.

    Google Scholar 

  23. D.J. Green, P. Nicholson and J. Embury, Journal of Material Science 14 (1979) 1413–20.

    Article  Google Scholar 

  24. D.J. Green, P. Nicholson and J. Embury, Journal of Material Science 14 (1979) 1657–61.

    Article  Google Scholar 

  25. W. Muller and S. Schmauder, International Journal of Fracture 59 (1993) 307–43.

    Google Scholar 

  26. W. Muller and S. Schmauder, International Journal of Solids and Structures 29 (1992) 1907–18.

    Article  Google Scholar 

  27. F. Erdogan and G. Gupta, International Journal of Fracture 11 (1975) 13–27.

    Article  Google Scholar 

  28. F. Lange, Philosophical Magazine 22 (1970) 983–92.

    Article  Google Scholar 

  29. P. Trusty and J. Yeomans, Ceramic Engineering Science Proceedings 14 (1992) 908–13.

    Article  Google Scholar 

  30. M. Meyer and S. Schmauder, Zeitschrift Metallkunde 83 (1992) 524–27.

    Google Scholar 

  31. J. Dundurs, Journal of Applied Mechanics 36 (1969) 650–52.

    Article  Google Scholar 

  32. D. Bogy, Journal of Applied Mechanics 38 (1971) 377–86.

    Article  Google Scholar 

  33. T. Suga, G. Elssner and S. Schmauder, Journal of Composite Materials 22 (1988) 917–21.

    Article  Google Scholar 

  34. W. Muller, S. Schmauder, A.G. Evans and R.M. McMeeking, International Journal of Fracture, in press.

  35. Z. Knesl and H. Maschke, Kovove Materialy 27 (1989) 175.

    Google Scholar 

  36. F.G. Buchholz and H. Richard, Advances in Fracture Research, Vol 3, K. Salama (ed.), Pergamon Press (1989) 2301–2308.

  37. E.F. Rybicki and M.F. Kanninen, Engineering Fracture Mechanics 9 (1977) 931–938.

    Article  Google Scholar 

  38. J.C. Brebbia, J.C.F. Telles and L. Wrobel, in Boundary Element Technique-Theory and Applications, NY (1984).

  39. H. Maschke, Technische Mechanik 6 (1985) 17.

    Google Scholar 

  40. F. Erdogan and G.C. Sih, ASME Journal of Basic Engineering 85 (1963) 519–527.

    Article  Google Scholar 

  41. P. Lipetzky and S. Schmauder, International Journal of Fracture 65 (1994) 345–58.

    Article  Google Scholar 

  42. A. Krell and W. Pompe, Materials Science and Engineering 89 (1987) 161–68.

    Article  Google Scholar 

  43. K.T. Faber and A.G. Evans, Acta Metallurgica 31 (1983) 565–76.

    Article  Google Scholar 

  44. K.T. Faber and A.G. Evans, Acta Metallurgica 31 (1983) 577–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipetzky, P., Knesl, Z. Crack-particle interaction in a two-phase composite Part II: crack deflection. Int J Fract 73, 81–92 (1995). https://doi.org/10.1007/BF00039853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039853

Keywords

Navigation