Skip to main content
Log in

Crack-resistance behavior as a consequence of self-similar fracture topologies

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The effect of the invasive fractality of fracture surfaces on the toughness characteristics of heterogeneous materials is discussed. It is shown that the interplay of physics and geometry turns out to be the non-integer (fractal) physical dimensions of the mechanical quantities involved in the phenomenon of fracture. On the other hand, fracture surfaces experimentally show multifractal scaling, in the sense that the effect of fractality progressively vanishes as the scale of measurement increases. From the physical point of view, the progressive homogenization of the random field, as the scale of the phenomenon increases, is provided. The Griffith criterion for brittle fracture propagation is deduced in the presence of a fractal crack. It is shown that, whilst in the case of smooth cracks the dissipation rate is independent of the crack length a, in the presence of fractal cracks it increases with a, following a power law with fractional exponent depending on the fractal dimension of the fracture surface. The peculiar crack-resistance behavior of heterogeneous materials is therefore interpreted in terms of the self-similar topology of the fracture domains, thus explaining also the stable crack growth occurring in the initial stages of the fracture process. Finally, extrapolation to the macroscopic size-scale effect of the nominal fracture energy is deduced, and a Multifractal Scaling Law is proposed and successfully applied to relevant experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Coster and J.L. Chermant, International Metals Review 28 (1983) 228–250.

    Google Scholar 

  2. B.B. Mandelbrot, D.E. Passoja and A.J. Paullay, Nature 308 (1984) 721–722.

    Article  Google Scholar 

  3. C.S. Pande, L.R. Richards and S. Smith, Journal of Material Science Letters 6 (1987) 295–297.

    Article  Google Scholar 

  4. E.E. Underwood and K. Banerji, Materials Science and Engineering 80 (1986) 1–14.

    Article  Google Scholar 

  5. C.W. Lung and S.Z. Zhang, Physica D 38 (1989) 242–245.

    Article  Google Scholar 

  6. H. Sumiyoshi, S. Matsuoka, K. Ishikawa and M. Nihei, JSME International Journal 35 (1992) 449–455.

    Google Scholar 

  7. H. Xie, in International Symposium on Application of Computer Methods in Rock Mechanics and Engineering, A.A. Balkema Publishers, Amsterdam (1993).

    Google Scholar 

  8. S.R. Brown and C.H. Scholz, Journal of Geophysical Research 90 (1985) 12575–12582.

    Article  Google Scholar 

  9. V.E. Saouma, C.C. Barton and N.A. Gamaleldin, Engineering Fracture Mechanics 35 (1990) 47–53.

    Article  Google Scholar 

  10. D.A. Lange, H.M. Jennings and S.P. Shah, Journal of American Ceramic Society 76 (1993) 589–597.

    Article  Google Scholar 

  11. M.A. Issa and A.M. Hammad, Cement and Concrete Research 24 (1994) 325–334.

    Article  Google Scholar 

  12. A. Carpinteri and B. Chiaia, Materials and Structures 28 (1995) 435–443.

    Article  Google Scholar 

  13. D.L. Davidson, Journal of Materials Science 24 (1989) 681–687.

    Article  Google Scholar 

  14. A. Carpinteri, Mechanics of Materials 18 (1994) 89–101.

    Article  Google Scholar 

  15. A. Carpinteri and B. Chiaia, Materials and Structures (1996), to be published.

  16. B.B. Mandelbrot, Physica Scripta 32 (1985) 257–260.

    Article  Google Scholar 

  17. A. Carpinteri, International Journal of Solids and Structures 31 (1994) 291–302.

    Article  Google Scholar 

  18. A. Chudnowski and B. Kunin, Journal of Applied Physics 62 (1987) 4124–4133.

    Article  Google Scholar 

  19. A.A. Griffith, Philosophical Transaction of the Royal Society (London), A 221 (1921) 163–198.

    Article  Google Scholar 

  20. G.R. Irwin, Journal of Applied Mechanics 24 (1957) 361–364.

    Google Scholar 

  21. K.G. Wilson, Physical Review B4 (1971) 3174–3205.

    Article  Google Scholar 

  22. A.B. Mosolov, Europhysics Letters 24 (1993) 673–678.

    Article  Google Scholar 

  23. A. Carpinteri, International Journal of Fracture 51 (1991) 175–186.

    Google Scholar 

  24. B. Gong and Z.H. Lai, Engineering Fracture Mechanics 44 (1993) 991–995.

    Article  Google Scholar 

  25. R.E. Williford, Scripta Metallurgica et Materialia 24 (1990) 455–460.

    Google Scholar 

  26. F.H. Wittmann, H. Mihashi and N. Nomura, Engineering Fracture Mechanics 35 (1990) 107–115.

    Article  Google Scholar 

  27. RILEM Technical Committee 50, Materials and Structures 18 (1985) 287–290.

    Article  Google Scholar 

  28. J.K. Kim, H. Mihashi, K. Kirikoshi and T. Narita, in Proceedings of the First International Conference on Fracture Mechanics of Concrete Structures, FRAMCOS1, Breckenridge (1992) 561–566.

  29. H. Zhong, Internal Report, Institute for Building Materials, Swiss Federal Institute of Technology, Zürich, (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Chiaia, B. Crack-resistance behavior as a consequence of self-similar fracture topologies. Int J Fract 76, 327–340 (1996). https://doi.org/10.1007/BF00039781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039781

Keywords

Navigation