Skip to main content
Log in

Optimal pollination conditions for seed set after a self-pollination, an intraspecific cross and an interspecific cross of marrow-stem kale (Brassica oleracea var. acephala)

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

The effects of different pollination techniques, with and without emasculation and delayed pollination, were investigated to find the conditions for maximum seed set after self-pollination and intraspecific and interspecific crosses of Brassica oleracea var. acephala. The results indicated that the pollination conditions achieving maximum seed set vary with the type of pollination. After controlled self-pollination, the best seed set occurs in bud 3 to bud 10. For the intraspecific cross, the youngest flower and the oldest bud produced the largest number of developed ovules but bud pollination was productive to bud 8. The yields from these two pollination types were best when the female parent was not emasculated. In the interspecific cross with B. campestris cv. Marco the best results came from the youngest flowers and the oldest buds subjected to the standard practice of pollinating directly after emasculation. Possible reasons for these effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allee, L. & M.A., Mutschler, 1983. The effects of bud maturity on fertilization in Brassica campestris L. Hort. Sci. 18: 899–900.

    Google Scholar 

  • Billing, J. 1984. Self-incompatibility and the production of hybrid cauliflower seed. In: E.G. Williams & R.B. Knox (Eds.). Pollination '84. Proc. Symp. Plant Cell Biology Research Centre, Melbourne School of Botany, Melbourne.

  • Brown, Angela, P., 1985. Pollen, embryo and endosperm development following cross-pollination within and between the crop species Brassica campestris, Brassica oleracea, Brassica napus and Raphanus sativus, Ph.D. Thesis, University of Edinburgh.

  • Carter, A.L., S.T., Williams & T., McNeilly, 1975. Scanning electron microscope studies of pollen behaviour on immature and mature brussels sprouts (Brassica oleracea var. gemmifera) stigmas. Euphytica 24: 133–141.

    Google Scholar 

  • Heslop-Harrison, Y. & K.R., Shivanna, 1977. The receptive surface of the angiosperm stigma. Ann. Bot. 41: 1233–1258.

    Google Scholar 

  • Inomata, N., 1985. A revised medium for in vitro culture of Brassica ovaries. In: G.P., Chapman, S.H., Mantell & R.W., Daniels (Eds.). Experimental manipulation of ovule tissues, pp. 164–176. Longmans, London.

    Google Scholar 

  • Knox, R.B. & M.B., Singh, 1987. New perspectives in pollen biology and fertilization. Ann. Bot. 60: Supplement 4, 15–37.

    Google Scholar 

  • Knox, R.B., E.G., Williams & C., Dumas, 1986. Pollen, pistil and reproductive function of crop plants. Plant Breeding Reviews 4: 9–79.

    Google Scholar 

  • Knox, R.B., R., Willing & A.E., Ashford, 1972. Role of pollen wall proteins as recognition substances in interspecific incompatibility in poplars. Nature 237: 381–383.

    Google Scholar 

  • Murakami, Y., 1975. The role of gibberellins in the growth of floral organs of Mirabilis jalapa. Plant and Cell Physiol. 16: 337–345.

    Google Scholar 

  • Pandey, K.K., 1976. The genus Nicotiana: Evolution of incompatibility in flowering plants. Linn. Soc. Symp. Ser. 7: 421–434.

    Google Scholar 

  • Pechan, P.M., 1988. Ovule fertilization and seed number per pod determination in oil seed rape (Brassica napus). Ann. Bot. 61: 201–207.

    Google Scholar 

  • Plack, A.M., 1958. Effect of gibberellic acid on corolla size. Nature, London 182: 610.

    Google Scholar 

  • Roberts, I.N., A.D., Stead, D.J., Ockendon & H.G., Dickinson, 1980. Pollen-stigma interactions in Brassica oleracea. Theor. Appl. Genet. 58: 241–246.

    Google Scholar 

  • Roggen, H.P.J.R., 1972. Scanning electron microscope observations on compatible and incompatible pollen-stigma interactions in Brassica. Euphytica 21: 1–10.

    Google Scholar 

  • Sastri, D.C., 1984. Incompatibility in Angiosperms: Significance in crop improvements. In: T.H., Croaker, (Ed.). Adv. in Appl. Biol. X, 71–111. Academic Press, London.

    Google Scholar 

  • Shivanna, K.R., Y., Heslop-Harrison & J., Heslop-Harrison, 1978. The pollen stigma interaction: bud pollination in the Cruciferae. Acta. Bot. Neerl. 27: 107–119.

    Google Scholar 

  • Sundberg, E. & K., Glimelius, 1986. Resynthesis of Brassica napus via somatic hybridization: A model for production of interspecific hybrids within Brassiceae. In: W., Horn, C.J., Jensen, W., Odenbach & O., Schieder (Eds). ‘Genetic manipulation in plant breeding’, pp. 709–711. Walter de Gruyten, Berlin, New York.

    Google Scholar 

  • Tsujimoto, T. & K., Minato, 1981. Use of self incompatibility in hybrid breeding of Chinese cabbage. In: N.S., Talehar & T.D., Griggs (Eds). ‘Chinese cabbage’, pp. 365–375. Asian Veg. Res. Dev. Centre, Shanhua, Taiwan.

    Google Scholar 

  • Yun-Fu, Yin, J.R., Baggett & K.E., Rowe, 1981. The effect of bud self pollination and open flower self pollination on the field characteristics of Broccoli (Brassica oleracea var. italica). Euphytica 30: 841–845.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, A.P., Brown, J. & Dyer, A.F. Optimal pollination conditions for seed set after a self-pollination, an intraspecific cross and an interspecific cross of marrow-stem kale (Brassica oleracea var. acephala). Euphytica 51, 207–214 (1990). https://doi.org/10.1007/BF00039720

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039720

Key words

Navigation