Skip to main content
Log in

Induced mutation

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The author gives a survey of the methods used and the results obtained in induced mutation. The article consists of three parts: the general theoretical aspects, the possibilities of practical application and a bibliography of 789 titles.

In the theoretical part (Mutation research) the various types of mutation are mentioned, but only gene- or point mutations and structural mutations are discussed. These two categories cannot be distinguished sharply. Study of diploid organisms is less easy than that of haploid ones, study of cross-fertilizers less easy than that of self-fertilizers, and study of recessive mutations (the most frequent type) less easy than that of dominant ones. Methods for induction of mutations are discussed in the chapters “Irradiation as mutagen” and “Chemical mutagens”.

In the second part the mutagens, treatments, mutation frequency, mutation spectrum, selection methods, etc. are discussed with respect to the possibilities of practical application (Mutation breeding). Chemical mutagens are becoming more important. The techniques for production and for selection of mutants demand improvement and refinement. Hitherto interest has been mainly concentrated upon easily recognizable morphological mutations. Attention, however, should also be drawn more towards the smaller, quantitative, physiological, chemical mutations.

Mutation breeding offers many possibilities and difficulties. The keen eye, the optimism, enthousiasm and perseverence which are of so much importance in the normal plant breeding, are necessary in mutation breeding as well.

Samenvatting

De schrijver geeft een samenvattend overzicht omtrent gebruikte methoden en verkregen resultaten bij kunstmatige mutatie. De stof is gesplitst in een algemeen theoretisch gedeelte en een gedeelte omtrent de mogelijkheden van praktische toepassing bij de veredeling.

In het theoretisch gedeelte (Mutatie-onderzoek) worden de verschillende typen van mutatie kort besproken, terwijl dan verder alleen gen- of puntmutaties en structurele mutaties worden behandeld. Deze twee categorieën zijn trouwens niet scherp te scheiden. Het onderzoek bij diploiden is moeilijker dan dat bij haploiden, dat bij kruisbestuivers moeilijker dan dat bij zelfbestuivers, en dat van recessieve genmutaties (de meeste) moeilijker dan dat van dominante. De belangrijkste methoden voor het verkrijgen van mutaties worden dan in een tweetal hoofdstukken behandeld: “Bestraling als mutagens” en “Chemische mutagentia”.

In het tweede gedeelte worden mutagentia, behandelingsmethoden, mutatiefrequentie, mutatiespectrum, selectiemethoden, enz. beschouwd in verband met de mogelijkheden van praktische toepassing (Mutatieveredeling). Chemische mutagentia blijken in betekenis toe te nemen. De methodieken voor de productie en voor de selectie van mutanten dienen verbeterd en verfijnd te worden. Bij de selectie is tot nu toe vaak te eenzijdig gelet op de grotere morfologische mutaties. Er zal meer aandacht besteed moeten worden aan kleinere, kwantitatieve, physiologische, chemische mutaties.

De mutatieveredeling biedt veel mogelijkheden en moeilijkheden. Het scherpe oog, het optimisme, enthousiasme en uithoudingsvermogen die bij het gewone veredelingswerk zo belangrijk zijn, kunnen ook bij de mutatieveredeling niet gemist worden.

De bijbehorende bibliographie is in vieren gesplitst:

  1. a.

    Enkele meer uitgebreide literatuurlijsten.

  2. b.

    Boeken, proceedings, symposia, enz.

  3. c.

    Artikels van algemene of samenvattende aard.

  4. d.

    Overige artikels (vooral na 1954 en vooral hogere planten).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

Reference books or articles

  • Angulo, Carpia, Maria, D., 1956–'58. Accion de agentes fisicos and citogenetica. Notas bibliograficas I, II, III, IV. Genetica Iberica 8, p. 53–69 and 133–144, 10, p. 99–127 and 209–226. (Arranged according to the type of mutagen).

    Google Scholar 

  • Angulo, Carpia, Maria, D., 1957–'58. Accion de agentes quimicos and citogenetica. Notas bibliograficas I, II. Genetica Iberica 9, p. 309–328 and 10, p. 193–207. (Arranged according to the mutagens).

    Google Scholar 

  • Sparrow, A. H., Binnington, J. P. and Pond, Virginia, 1958. Bibliography on the effects of ionizing radiations on plants, 1896–1955. Brookhaven National Laboratory. (An extensive index enables to find the relevant articles for every plant, every treatment and every conception directly. A second part for the extensive recent literature is in preparation).

  • Stephens, Sophie V., and Boche, R. D., 1953. Annotated bibliography in radiobiology (Unit. St. Energy Comm., ANL-5111). U.S. Government Printing Office, Washington 25, D.C.

    Google Scholar 

Some handbooks, proceedings, symposia, etc.

  • Acta Agric. Scand. 4, no. 3, 1954. Mutation Research in Plants (Editor R. Torsell).

  • Advances in Radiobiology. Proceedings 5th Int. Conf. on Radiobiology, Stockholm 1956. Ed. by Hevesy, G. C. de, Forssberg, A. G., and Abbatt, J. D., Oliver and Boyd, Edinburgh. 1957.

    Google Scholar 

  • Bacq, Z. M. et Alexander, P., 1955. Principes de radiobiologie. Masson et Cie, Paris. (2nd ed: Fundamentals of radiobiology, Butterworth Sc. Publ., London, 1957).

    Google Scholar 

  • Brookhaven Symp. Biol. 6, 1954. Abnornal and pathological plant growth.

  • Brookhaven Symp. Biol. 8, 1955. Mutation.

  • Brookhaven Symp. Biol. 9, 1956. Genetics in plant breeding.

  • Cold Spring Harbor, Symposia on quantitative biology. Vol. 16, 1951. Genes and mutations.

  • Cold Spring Harbor, Symposia on quantitative biology. Vol. 21, 1956. Genetic mechanisms: Structure and function.

  • Comar, C. L., 1957. Atomic energy and agriculture. Amer. Ass. Advanc. Science.

  • Conference on chromosomes, Wageningen 1956. Tjeenk-Willink, Zwolle.

  • Conference radioactive isotopes in agriculture, U.S.A. E.C., 1956.

  • Dick, W. E., 1957. Atomic energy in agriculture. Butterworth Sc. Publ., London.

    Google Scholar 

  • Elliott, F. C., 1958. Plant breeding and cytogenetics. Mac Graw-Hill Book Comp. Inc. New York, Toronto, London.

    Google Scholar 

  • Goldschmidt, R. B., 1956. Theoretical genetics. Univ. Calif. Press, Berkeley and Los Angeles.

    Google Scholar 

  • Handbuch der pflanzenzüchtung, Band I, Grundlagen der Pflanzenzüchtung. Herausgegeben von H. Kappert u. W. Rudorf. P. Parey, Berlin u. Hamburg.

  • Hine, G. J. and Brownell, G. L., 1958. Radiation dosimetry. Academic Press Inc., New York.

    Google Scholar 

  • International congress of radiation research, Burlington, Vermont, 1958. Radiation Research 9, p. 84–206.

    Google Scholar 

  • Landbouwkundig tijdschrift, extra nummer, Mei 1958. De toepassing van de atoomenergie in de landbouw.

  • Lea, D. E., 1946 en 1956. Actions of radiations on living cells. Cambridge Univ. Press, sec. ed. 1956.

  • Marquardt, H., 1957. Natürliche und künstliche Erbänderungen, 177 p. Rowohlt, Hamburg. 072

    Google Scholar 

  • Mc Elroy, N. D., and Glass, B., 1957. Chemical basis of heredity. John Hopkins Press, Baltimore.

    Google Scholar 

  • Proceedings 5th int. conf. radiobiology, Stockholm 1956 (Advances in Radiobiology).

  • Proceedings 8th int. congr. genet., Stockholm, Hereditas Suppl., 1948.

  • Proceedings 9th int. congr. genet., Bellagio, Caryologia Suppl. 6, 1953.

  • Proceedings 10th int. congr. genet., Montreal, Vol. I and II, 1958.

  • Proceedings first intern. conf. peaceful uses atomic energy, Geneva 1955 (Vol. 12).

  • Proceedings second intern. conf. peaceful uses atomic energy, Geneva, 1958.

  • Proceedings ninth oak ridge regional symposium on “radiation in plant breeding”, 1957.

  • Proceedings of the intern. genet. symposia, Tokyo 1956, 1957.

  • Progress in radiobiology. Ed. by J. S. Mitchell, B. E. Holmes and C.L. Smith. Oliver and Boyd, Edinburgh. 1956.

    Google Scholar 

  • Radiation biology. Ed. by A. Hollaender. New York, McGraw Hill, 1954. Vol. I, 1954: High energy radiation. (Part 1 and Part 2). Vol. II, 1955: Ultraviolet and related radiations. Vol. III, 1956: Visible and near visible light.

    Google Scholar 

  • Report of the un. nations scient. committee on the effects of atomic radiations, 1958. M. Nijhoff, 's-Gravenhage.

  • Stebbins, G. L., 1950. Variation and evolution in plants. Columbia Uriv. Press, 643 p.

  • Swasson, C. P., 1957. Cytology and cytogenetics. Prentice Hall, Inc, Englewood Cliffs, N.J.

    Google Scholar 

  • Symposium on chromosome breakage, 1952. Heredity 6, Supplement.

  • Symposium on induced mutations for plant breeding, 1959 (Mutazioni indotte con agenti fisici e chemici per miglioramento di piante coltivate, Forli-Castrocaro, 1959). Genetica Agraria 12.

  • Symposium de radiobiologie, Liège 1954. Butterworths Sc. Publ. London, 1955.

  • Symposium über “chemische mutagenese”, Gatersleben, 1959. Editor H. Stubbe. Abhandlungen 072 d. Deutschen Ad. d. Wissensch, Berlin, 1960 (in press).

    Google Scholar 

  • Vries, H. de, 1901–1903. Die Mutationstheorie, I, II. Veit und Co, Leipzig. 072

    Google Scholar 

Some articles of a general or summarizing character (see also under d, p. 298).

  • Alexander, P., 1956. The relative importance of direct and indirect radiochemical processes in radiobiology. Proc. 5th Int. Conf. Radiobiol., Stockholm 1956, p. 8–16.

  • Auerbach, Charlotte, 1951. Induction of changes in genes and chromosomes. Problems in chemical mutagenesis. (Here the older literature). Cold Spring Harbor Symp. Quant. Biol. 16, p. 199–213.

    Google Scholar 

  • Auerbach, Charlotte, 1957. Genetical effects of radiation and chemicals. Experientia 13, p. 217–224.

    Google Scholar 

  • Baker, W. K., 1955. The oxygen effect and the mutation process. Brookhaven Symp. Biol. 8, Mutation, p. 191–200.

    Google Scholar 

  • Barthelmesz, A., 1956. Mutagene Arzneimittel. Zeitschr. f. Arzneimittelforschung 6, p. 151–168. (Ext. lit. list).

    Google Scholar 

  • Boyland, E., 1954. Mutagens. Pharmacol. Rev. 6, p. 345–364.

    Google Scholar 

  • Broertjes, C., 1958. Het verkrijgen van mutaties door ioniserende stralen. Landbouwk. Tijdschrift 70, p. 303–312.

    Google Scholar 

  • d'Amato, F. and Hoffmann-Ostenhof, O., 1956. Metabolism and spontaneous mutations in plants. (Lit.!) Advances in Genetics 8, p. 1–28.

    Google Scholar 

  • Demerec, M., 1953. Genetic action of mutagens. Proc. 9th Int. Congr. Genet. Bellagio, Caryologia 6, Suppl., p. 201–217.

    Google Scholar 

  • Demerec, M., 1955. What is a gene? —Twenty years later. Am. Naturalist 89, p. 5–20.

    Google Scholar 

  • Ehrenberg, L., 1954. Ionizing radiations: mechanism of action and dosimetry. Acta Agric. Scand. 4, 1954, p. 365–395.

    Google Scholar 

  • Ehrenberg, L., 1959. Induced mutation in plants: mechanisms and principles (in pr.). Genetica Agraria 12.

  • Ehrenberg, L. and Gustafsson, Å., 1959. Report on mutagenic and carcinogenic chemicals (in Swedish).

  • Ehrenberg, L., Gustafsson, Å., and Wettstein, D. von, 1956. Studies on the mutation process in plants-regularities and intentional control. Conf. on Chromosomes, Wageningen.

  • Ehrenberg, L. and Saeland, E., 1954. Chemical dosimetry of radiations giving different ion densities. Jener, Publ. 8.

  • Fano, U., 1954. Principles of radiological physics. Radiation Biology I, p. 1–144. (Ed. by A. Hollaender).

  • Franck, J. and Platzman, R., 1954. Physical principles underlying photochemical, radiationchemical and radiobiological reactions. Radiation Biology I, p. 191–254. (Ed. by A. Hollaender).

  • Freisleben, R., and Lein, A., 1943. Möglichkeiten und praktische Durchführung der Mutationszüchtung. Kühn-Archiv 60, p. 211–225.

    Google Scholar 

  • Gaul, H., 1957. Stand der Mutationsforschung und ihre Bedeutung für die praktische Pflanzenzüchtung. Arbeiten der D.L.G. 44, p. 54–71.

    Google Scholar 

  • Gaul, H., 1959. Present aspects of induced mutations in plant breeding. Euphytica 7, p. 275–289.

    Google Scholar 

  • Gaul, H., 1959. Critical analysis of the methods for determining the mutation frequency after seed treatment (in pr.). Agraria Genetica 12.

  • Gelin, O. E. V., 1956. Problems relating to plant breeding by means of mutation. Agr. Hort. Genetica 14, p. 127–136.

    Google Scholar 

  • Grant, V., 1956. Chromosome repatterning and adaptation. Advances in Genetics 8, p. 89–107.

    Google Scholar 

  • Gunckel, J. E. and Sparrow, A. H., 1959. The effects of ionizing radiations on growth and development of plants. Handbuch der Pflanzenphysiologie (in press).

  • Gustafsson, Å., 1947. Mutations in agricultural plants. Hereditas 33, p. 1–100.

    Google Scholar 

  • Gustafsson, Å., 1954. Mutations, viability, and population structure. Acta Agric. Scand. 4, p. 601–632.

    Google Scholar 

  • Gustafsson, Å., and Tedin, O., 1954. Plant breeding and mutations. Acta Agric. Scand. 4, p. 633–640.

    Google Scholar 

  • Gustafsson, Å., and Wettstein, D. von, 1958. Mutationen und Mutationszüchtung. Handbuch d. Pflanzenz. I, p. 612–699.

    Google Scholar 

  • Haddow, A., 1958. Chemical carcinogens and their modes of action. Brit. Med. Bull. 14, p. 79–92.

    Google Scholar 

  • Harlan, J. R., 1956. Distribution and utilization of natural variability in cultivated plants. Brookhaven Symp. Biol. 9, p. 191–208.

    Google Scholar 

  • Heslot, H., 1959. Induction des mutations chez les plantes cultivées. Recherches effectuées par les agronomes français. (in pr.). Genetica Agraria 12.

  • Hoffmann, W., 1952. Ergebnisse der Mutationszüchtung. Vorträge Pflanzenzüchtung 1951, p. 36–53.

  • Hollaender, A., et al., 1958. New developments in radiation protection and recovery. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva, 1958. (P/898).

  • Kampen, E. J. van, 1959. Ioniserende straling. Chemisch Weekblad 55, p. 153–158, 165–170.

    Google Scholar 

  • Kaplan, R. W., 1956. Gegenwärtige Probleme der Strahlengenetik. Arztl. Mittlg. 41, p. 1–23.

    Google Scholar 

  • Keitt, G. W., and Boone, D. M., 1956. Use of induced mutations in the study of host-pathogen relationships. Brookhaven Symp. Biol. 9, p. 209–225.

    Google Scholar 

  • Knapp, E., 1950. Grundfragen der experimentellen Mutationsauslösung in ihre Bedeutung für die 072 praktische Pflanzenzüchtung. Vortrag a. d. Pflanzenzüchtertagung, Einbeck, 1950, 20pp.

    Google Scholar 

  • Konzak, C. F., 1956. Some procedural problems associated with mutation. Studies in crop plants. Work Conference on Radiation Induced Mutation, Brookhaven, etc. p. 132–151.

  • Konzak, C. F., 1956. Induction of mutations for disease resistance in cereals. Brookhaven Symp. Biol. 9, p. 157–171.

    Google Scholar 

  • Konzak, C. F., 1957. Genetic effects of radiation of higher plants. Quarterly Rev. Biol. 32, p. 27–45.

    Google Scholar 

  • Konzak, C. F., 1959. Induced mutations in host plants for the study of host-parasite interactions. In „ Plant Pathology Problems and Progress... 1908–1958” (1959, in press).

  • Mac Key, J., 1956. Mutation breeding in Europe. Brookhaven Symp. Biol. 9, p. 141–156.

    Google Scholar 

  • Marinelli, L. D. and Taylor, L. S., 1954. The measurement of ionizing radiations for biological purposes. Radiation Biology I, p. 145–190. (Ed. by A. Hollaender).

  • Muller, H. J., 1954. a. The nature of genetic effects produced by radiation. b. The manner of production of mutations by radiation. Radiation biology I, a. p. 351–473, b. p. 475–626. (Ed. by A. Hollaender).

  • Muller, H. J., 1955. On the relation between chromosome changes and gene mutations. Brookhaven Symp. Biol. 8, p. 126–147.

    Google Scholar 

  • Muller, H. J., 1958. The mutation theory re-examined. Proc. 10th Int. Congr. Genetics, Montreal, Vol. I, p. 306–317.

    Google Scholar 

  • Muller, H. J., 1958. Advances in radiation mutagenesis through studies on Drosophila. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva 1958. (P/893).

  • Nilan, R. A., 1956. Factors governing plant radiosensitivity. Conf. Radioactive Isotopes in Agric., U.S.A.E.C., T I D 7512, p. 151–162.

  • Nilan, R. A., 1959. Factors modifying radiosensibility in plants. (in pr.). Genetica Agraria 12.

  • Nilan, R. A., 1959. Radiation induced mutation research in the United States of America. Proceedings II Congr. Eur. Assoc. Res. Plant Br., Eucarpia.

  • Novick, A., 1955. Mutagens and antimutagens. Brookhaven Symp. Biol. 8, Mutation, p. 201–215.

    Google Scholar 

  • Nybom, N., 1957. Växtförädling med hjälp av inducerade mutationer. Sver. Utsädesför. Tidskr. 67, p. 34–55.

    Google Scholar 

  • Patt, H. M., 1953. Protective mechanisms in ionizing radiation injury. Physiol. Rev. 33, p. 35–76.

    Google Scholar 

  • Röbbelen, G., 1959. 15 Jahre Mutationsauslösung durch Chemikaliën. Der Züchter 29, p. 92–95. 072

    Google Scholar 

  • Silow, R. A., 1958. The potential contribution of atomic energy to development in agriculture and related industries. Intern. Journ. Appl. Rad. and Isotopes 3, p. 257–280.

    Google Scholar 

  • Singleton, W. R., Konzak, C. F., Shapiro, S., and Sparrow, A. A., 1956. The contribution of radiation genetics to crop improvement. Proc. First Intern. Conf. Peaceful Uses Atomic Energy, Vol. 12, p. 25–30.

    Google Scholar 

  • Smith, H. H., 1958. Radiation in the production of useful mutations. The Bot. Rev. 24, p. 1–24.

    Google Scholar 

  • Sobels, F. H., 1957. Chemische processen bij het opwekken van mutaties en chromosoombreuken in Drosophila. Genen en phaenen 2, p. 45–60.

    Google Scholar 

  • Sparrow, A. H. and Gunckel, J. E., 1955. The effects on plants of chronic exposure to gamma radiation from radiocobalt. Proc. First Intern. Conf. Peaceful Uses Atomic Energy, Vol. 12, p. 52–59.

    Google Scholar 

  • Stone, W. S., 1955. Indirect effects of radiation on genetic material. Brookhaven Symp. Biol. 8, Mutation p. 171–190.

    Google Scholar 

  • Stubbe, H., 1952. Über einige theoretische und praktische Fragen der Mutationsforschung Abh.. Sächs. Akad. Wiss., math. nat. Kl 47, p. 1–23.

    Google Scholar 

  • Stubbe, H., 1958. Advances and problems of research in mutations in the applied field. Proceedings 10th Intern. Congress of Genetics, Montreal Vol. I, p. 247–260.

    Google Scholar 

  • Stubbe, H. und Wettstein, F. von, 1941. Über die Bedeutung von Klein- and Grossmutationen in der Evolution. Biol. Zentralbl. 61, p. 265–297.

    Google Scholar 

  • Swanson, C. P. and Stadler, L. J., 1954. The effect of ultraviolet radiation on the genes and chromosomes of higher organisms. Radiation Biology II, p. 249–284. (Ed. by A. Hollaender).

  • Unrau, J., 1958. Cytogenetics and wheat-breeding. Proc. 10th Int. Congr. Genetics, Montreal, Vol. I, p. 129–141.

    Google Scholar 

  • Wasscher, J., 1953. Hoe zijn de variëteiten van de bloemisterijgewassen ontstaan? Med. Dir. v. d. Tuinbouw 16, p. 473–486.

    Google Scholar 

  • Westergaard, M., 1957. Chemical mutagenesis in relation to the concept of the gene. Experientia 13 p. 224–234.

    Google Scholar 

Other articles (see also under c, p. 296)

  • Abel, B., 1955. Eine Methode zur Erhaltung von homozygoten Chlorophyllmutanten. Naturwiss. 42, p. 372–373.

    Google Scholar 

  • Abrahamson, S., 1956. The effects on rearrangement frequency of different oxygen tensions either during or between fractionated X-ray treatments of Drosophila oocytes. Records Gen. Soc. Am. 25 and Genetics 41, p. 631 (abstr.).

  • Abrahamson, S., 1959. The influence of oxygen on the X-ray induction of structural changes in Drosophila oocytes. Genetics 44, p. 173–185.

    Google Scholar 

  • Abrahamson, S., Herskowitz, I. H. and Muller, H. J., 1956. Identification of half-translocations produced by X-raying attached X-chromosomes in Drosophila melanogaster. Genetics 41, p. 410–419.

    Google Scholar 

  • Adams, J. D., and Nilan, R. A., 1958. After effects of ionizing radiation in barley. II. Modification by storage of X-irradiated seeds in different concentrations of oxygen. Radiation Research 8, p. 111–122.

    Google Scholar 

  • Adams, J. D., Nilan, R. A., and Gunthardt, H. M., 1955. After effects of ionizing radiation in barley. I. Modification by storage of X-rayed seeds in oxygen and nitrogen. A preliminary report. Northwest Sci. 29, p. 101–108.

    Google Scholar 

  • Akerberg, E., 1954. Mutations in X-rayed material of the six-rowed barley variety Edda I. Acta Agric. Scand. 4, p. 544–548.

    Google Scholar 

  • Alexander, P., 1952. Interference with the formation of a nucleoprotein complex by radiomimetic compounds. Nature 169, p. 226–227.

    Google Scholar 

  • Alexander, P., 1956. The relative importance of direct and indirect radiochemical processes in radiobiology. Proc. 5th Int. Conf. Radiobiol., Stockholm 1956, p. 8–16.

  • Alexander, P. and Charlesby, A., 1954. Physico-chemical methods of protection against ionizing radiations. Symp. de Radiobiologie, Liège 1954, p. 49–60.

  • Altenburg, L. S. and Altenburg, E., 1958. The induction of visible mutations at selected loci by alkylating agents. (Drosophila). Proc. 10th Int. Congr. Genetics, Montreal II, p. 6–7.

    Google Scholar 

  • Ambrose, E. J. and Gopal-Ayengar, A. R., 1952. Molecular orientation and chromosome breakage. Heredity Suppl. 6, p. 277–292.

    Google Scholar 

  • Anderson, E. G., 1956. The application of chromosomal techniques to maize improvement. Brookhaven Symp. Biol. 9, p. 23–35.

    Google Scholar 

  • Anderson, G. and Olsson, G., 1954. Svalöfs Primex white mustard—a market variety selected in X-ray treated material. Acta Agric. Scand. 4, p. 574–577.

    Google Scholar 

  • Arkel, G. A. Van, 1955. Erfelijkheidsonderzoek bij Aspergillus. Hand. 34ste Nat. en Geneesk. Congr. Wageningen, 1955.

  • Arkel, G. A. Van, 1958. Modification of ultraviolet and formaldehyde mutagenesis in Aspegillus nidulans. Diss., Utrecht, 1958.

  • Arnason, T. J. a. o. 1952. Radiation-induced mutations in wheat and barley. Cand. Journ. Bot. 30, p. 743–754.

    Google Scholar 

  • Atkinson, C. F., Ross, J. G. and Franzke, C. J., 1956. Differential reaction of two varieties of sorghum to colchicine treatment. Genetics 41, p. 633–634.

    Google Scholar 

  • Auerbach, C., 1943. Chemical induced mutations and re-arrangements. Dros. Inf. Serv. 17, p. 48–50.

    Google Scholar 

  • Auerbach, Ch., 1950. Possible differences between the effects of chemical and physical mutagenes. Pubbl. Staz. Zool. Napoli 22, (Suppl.) p. 1–19.

    Google Scholar 

  • Auerbach, C., 1957. The study of chemical mutagens by brood pattern analysis and by the scoring of ratios between visible and lethal mutations. Z. I.A.V. 88, p. 619–625.

    Google Scholar 

  • Auerbach, Ch. and Robson, J. M., 1946. Chemical production of mutations. Nature 157, p. 302.

    Google Scholar 

  • Auerbach, Ch., Robson, J. M. and Carr, J. G., 1947. The chemical production of mutations. Science 105, p. 243–247.

    Google Scholar 

  • Avanzi, S., 1959. Primi dati sulla radioresistenza relativa dell' apice del germoglio e dell'apice della radice nel seme di orzo (in pr.). Genetica Agraria 12.

  • Avanzi, S., c.s., 1959. Impiego di radiazioni ionizzanti per il miglioramento genetico di grani italiani (in pr.). Genetica Agraria 12.

  • Bandlow, G., 1951. Mutationsversuche an Kulturpflanzen. II. Züchterisch wertvollen Mutanten bei Sommer-und Wintergersten. Der Züchter 21, p. 357–363.

    Google Scholar 

  • Bandlow, G., 1954. Mutationsversuche an Kulturpflanzen. III. Über genetischen Vorstufen der Kapuzengerste mit variablen Manifestierung bei röntgeninduzierten Mutanten. Der Züchter 24, p. 20–27.

    Google Scholar 

  • Battaglia, E., 1948. Nuove sostanze inducenti frammentazione cromosomica. Publ. Staz. Zoöl. Nap. (Suppl.) 22, p. 125–157.

    Google Scholar 

  • Bauer, R., 1957. The induction of vegetative mutations in Ribes nigrum. Hereditas 43, p. 323–337.

    Google Scholar 

  • Beachell, H. M., 1957. The use of X-ray and thermal neutrons in producing mutations in rice. News Lett. F.A.O. Internat. Rice Comm. 6, p. 18–22.

    Google Scholar 

  • Beadle, G. W., 1955. Gene structure and gene action. Forschr. Chem. Org. Naturst. 12, p. 466–484.

    Google Scholar 

  • Beard, B. H., Haskins, F. A. and Gardner, C. O., 1958. Comparison of effects of X-rays and thermal neutrons on dormant seeds of barley, maize, mustard and safflower. Genetics 43, p. 728.

    Google Scholar 

  • Beatty, A. V. and Beatty, Jeanne, W., 1958.Cellular mechanisms involved in radiation-induced chromosomal aberrations. (Tradescantia). Proc. 10th Int. Congr. Genetics, Montreal, II, p. 15.

    Google Scholar 

  • Belgovsky, M. L., 1958. The shape of frequency-dosage curve for recessive lethals in Drosophila in relation to differential radiosensitivity of different stages of germ cell development. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 14–20.

    Google Scholar 

  • Belitz, H. J., 1957. Vergleichende Untersuchung der Verteilung spontaner und durch Chinon I (Bayer G 4073) induzierter Mutationen über die genetische Karte des X-Chromosoms von Drosophila melanogaster. Zschr. f. Vererbl. 88, p. 434–442.

    Google Scholar 

  • Belitz, H. J., 1959. Chromosomenfragmente, Minutes und sichtbare Mutationen bei Drosophila nach Behandlung mit Chinon I. Zschr. f. Vererbl. 90, p. 223–230.

    Google Scholar 

  • Bergann, F., 1957. Gelungene experimentelle Entmischungen und Umlagerungen bei bekannten oder vermuteten Periklinalchimären. Deut. Bot. Gesell. Ber. 70, p. 355–360.

    Google Scholar 

  • Berger, C. A., 1957. Some cytological effects of Gibberellin. Bull. of the Torrey Bot. Club. 84, p. 356–360.

    Google Scholar 

  • Bergfeld, R., 1958. Mutationsauslösung durch Chemikalien bei Antirrhinum majus L.. Zeitschr. Vererbungsl. 89, p. 131–142.

    Google Scholar 

  • Bergfeld, R., 1958. Untersuchungen an einigen Blattfarbenmutanten der Sippe 50 von Antirrhinum majus L. Zeitschr. f. Vererbungsl. 89, p. 143–160.

    Google Scholar 

  • Bethmann, G., 1959. Uber strahleninduzierte Letalfaktoren im S-Chromosom von Matthiola incana R. Br. Der Züchter 29, p. 36–51.

    Google Scholar 

  • Bhaduri, P. N. and Natarajan, A. T., 1956. Studies on the effect of nitrogen mustard on chromosomes in somatic and gametic plant tissues. Ind. Journ. Genet. Pl. Breeding 16, p. 8–23.

    Google Scholar 

  • Bhattacharjya, S. S. und Linskens, H. F., 1955. UÜber den Einfluss von “Systox”, “Metasystox” und “Pestox” auf die Kerne und Chromosomen von Vicia faba. Phytopath. Z. 23, p. 233–248.

    Google Scholar 

  • Bhattacharjya, S. S., 1958. Die Wirkung von Röntgenstrahlen auf Kerne mit verschiedener heterochromatischer Konstitution. Chromosoma 9, p. 305–318.

    Google Scholar 

  • Bianchi, A., 1959. Le traslocazioni fra cromosomi A e cromosomi B nel mais: loro uso per lo studio della mutabilità (in pr.). Genetica Agraria 12.

  • Bilquez, A., 1956. Comparaison des effets produits chez Crepis Zacintha (L.) Babc., par un rayonnement gamma. C. R. Acad. Sc. 242, p. 277–279.

    Google Scholar 

  • Bird, M. J., 1950. Mutagenic chemicals. Drosophila Inf. Serv. 24, p. 78–79.

    Google Scholar 

  • Bishop, C. J., 1954. Mutations in apples induced by X-radiation. Journ. Her. 45, p. 99–104.

    Google Scholar 

  • Bishop, C. J., 1957. Genetic changes in apples induced by thermal neutrons. Can. Journ. Plant. Science 37, p. 55–58.

    Google Scholar 

  • Bishop, C. J., 1958. Radiation-induced morphological changes and fruit color mutations in the Cortland apple. Proc. 10th Int. Congr. Genetics, Montreal, II, p.26.

    Google Scholar 

  • Blakeslee, A. F., 1954. The aging of seeds and mutation rate. Ann. N.Y. Ac. Sc. 57, p. 488–490.

    Google Scholar 

  • Blixt, S., Ehrenberg, L. and Gelin, O., 1958. Quantitative studies of induced mutation in peas. I. Methodological investigations. Agri Hort. Genet. 16, p. 238–250.

    Google Scholar 

  • Bonetti, S., 1957. In search of grains for the new atomic age.. (Italian). Agricoltura 6, p. 27–31.

    Google Scholar 

  • Bonner, D. M., 1956. The genetic unit. Cold Spring Harbor Symp. Quant. Biol. 21, p. 163–170.

    Google Scholar 

  • Bonnier, G., Jonsson, U. and Romel, C., 1958. Experiments on the influence of selection pressure on irradiated populations of Drosophila melanogaster. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva 1958. (P/169).

  • Borg, G., 1959. Svalöfs Original Pallaskorn (Sv. 04032), nytt 2-radskorn, röntgenmutation ur Bonus (with Eng. summ.). Sver. Utsädesför. Tidskr. 69, p. 72–96.

    Google Scholar 

  • Borg, G., Fröier, K., and Gustafsson, Å., 1958. Pallas barley, a variety produced by ionizing radiation: its significance for plant breeding and evolution. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva, 1958 (15/P/2468).

  • Bos, B. C., 1951. Het voorkomen en de aard van knopmutaties bij de aardappel. Meded. Alg. Ned. Keuringsd. landbouwz. aardappelpootgoed 8, 11–13.

    Google Scholar 

  • Breider, H., 1953. Entwicklungsgeschichtlich-genetische Studien über somatische Mutationen bei der Rebe. Der Züchter 23, p. 208–222.

    Google Scholar 

  • Breider, H., 1956. Über strahleninduzierte somatische Mutationen bei Reben. Bayerisches Landwirtsch. Jahrbuch 33, p. 515–533.

    Google Scholar 

  • Brock, R. D., 1957. Mutation plant breeding. J. Austr. Inst. Agric. Sc. 23, p. 39–50.

    Google Scholar 

  • Broertjes, C., 1959. Mutatie-veredeling. Kernenergie in de landbouw, 1, p. 6–8.

    Google Scholar 

  • Brown, M. S., 1950. Cotton from Bikini. Journ. Heredity 41, p. 115–121.

    Google Scholar 

  • Brownell, L. E., Nehemias, J. V. and Bulmer, J. J., 1954. Designs for potato irradiation facilities. Univ. Michigan, Eng. Res. Inst. Report no 1943, 37 pp.

  • Bruns, A., 1954. Die Auslösung von Mutationen durch Röntgenbestrahlung ruhender Samen von Trifolium pratense. Angew. Bot. 28, p. 120–155.

    Google Scholar 

  • Burdick, A. B., 1956. Mutagenic effect of thermal neutrons on wet and dry tomato seeds. Nature 178, p. 360–361.

    Google Scholar 

  • Burdick, A. B., and Mukai, T., 1958. Experimental consideration of the heterozygous genetic effect of low doses of irradiation on viability in Drosophila melanogaster. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 38.

    Google Scholar 

  • Burnham, C. R., 1954. Chromosomal interchanges in barley. Cytologia 19, p. 191–202.

    Google Scholar 

  • Burnham, C. R., 1956. Chromosomal interchanges in plants. Bot. Rev. 22, p. 419–452.

    Google Scholar 

  • Burnham, C. R. and Hagberg, A., 1956. Cytogenetical notes on chromosomal interchanges in barley. Hereditas 42, p. 467–482.

    Google Scholar 

  • Butler, L., 1954. Two new mutants in the tomato Propeller and Rosette. Journ. Heredity 45, p. 25–27.

    Google Scholar 

  • Buzzati-Traverso, A. A., 1953. On the role of mutation rate in evolution. Proc. 9th Intern. Congress Genetics, Bellagio, Caryologia 6, Suppl., p. 450–462.

  • Buzzati-Traverso, A. A. and Scossiroli, R. E., 1958. X-ray induced mutations in polygenic systems. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva 1958. (P/1391).

  • Caffey, H. R. and Wells, D. G., 1956. Variants observed in wheat and barley as a result of treatments with thermal neutrons and X-rays. Proc. etc. 53rd Ann. Conv. Ass. South Agric. Workers, Atlanta (Georgia), 1956, p. 66.

  • Caldecott, R. S., 1954. Inverse relationship between watercontent of seeds and their sensitivity to X-rays. Science 120, p. 809–810.

    Google Scholar 

  • Caldecott, R. S., 1955. Reduction in X-ray sensitivity of seeds by hydration. Nature 176 p. 306.

    Google Scholar 

  • Caldecott, R. S., 1955. Effects of ionizing radiations on seeds of barley. Radiation Research 3, p. 339–350.

    Google Scholar 

  • Caldecott, R. S., 1955. Effects of hydration on X-ray sensitivity in Hordeum. Radiation Research 3, p. 316–330.

    Google Scholar 

  • Caldecott, R. S., 1955. The effects of X-rays, 2 Mev electrons, thermal neutrons and fast neutrons on dormant seeds of barley. Ann. New York Ac. SC. 59, p. 514–535.

    Google Scholar 

  • Caldecott, R. S., 1956. Ionizing radiations as a tool for plant breeders. Proc. First Int. Conf. Peaceful Uses At. Energy, Vol. 12, p. 40–45.

    Google Scholar 

  • Caldecott, R. S., 1959. Post-irradiation modification of injury in barley-its basic and applied significance. Proc. 2nd. Geneva Conference on the Peaceful Uses of Atomic Energy.

  • Caldecott, R. S., Beard, B. H. and Gardner, C. O., 1954. Cytogenetic effects of X-ray and thermal neutron irradiation on seeds of barley. Genetics 39, p. 240–259.

    Google Scholar 

  • Caldecott, R. S., Frolik, E. F., and Morris, R., 1952. A comparison of the effects of X-rays and thermal neutrons on dormant seeds of barley. Proc. Natl. Acad Sci. U.S. 38, p. 804–809.

    Google Scholar 

  • Caldecott, R. S. and Smith, L., 1952. A study of X-ray-induced chromosomal aberrations in barley. Cytogia 17, p. 224–242.

    Google Scholar 

  • Caldecott, R. S. and Smith, L., 1952. The influence of heat treatments on the injury and cytogenetic effects of X-rays on barley. Exnetics 37, p. 136–157.

    Google Scholar 

  • Capinpin, J. M., 1957. Experiments on mutagenetic properties of poisonous plant extracts in the Philippines. Proc. Pacific Sci. Congr. 8, p. 344–345.

    Google Scholar 

  • Capinpin, J. M. and Chanphaka, U., 1958. Mutagenic effects of phytoextracts from Antiaris toxicaria and Dioscorea hispida upon living plant tissue. Proc. 10th Int. Congr. Genetics, Montreal, Vol. II, p. 42–43.

    Google Scholar 

  • Cardinali, G., 1954. Mutagenic activity of ethylenimine picrate. Nature 173, p. 825–826.

    Google Scholar 

  • Carlson, J. B., 1954. Cytohistological responses of plant meristems to maleic hydrazide. Iowa State Coll. Journ. of Science 29, p. 105–128.

    Google Scholar 

  • Carlson, J. G., 1954. Immediate effects on division, morphology, and viability of the cell. Radiation Biology I (ed. A. Hollaender), p. 763.

  • Carpenter, J. A., 1958. The induction of mutation in subterranean clover by X-irradiation. Austr. Inst. Agr. Sci. J. 24, p. 39–44.

    Google Scholar 

  • Carter, T. C., 1956. Genetic implications of irradiation in man. Proc. 5th Int. Congr. Radiobiol., Stockholm 1956, p. 416–424.

  • Caspar A. and Singleton W. R., Induced “gene” mutation in maize. Genetics 42, p. 364–365.

  • Catcheside, D. G., 1948. Genetic effects of radiations. Adv. Genetics 2, p. 271–358.

    Google Scholar 

  • Catcheside, D. G., Lea, D. E. and Thoday, J. M., 1946. Types of chromosome structural change induced by the irradiation of Tradescantia microspores. J. Genetics 47, p. 113–136.

    Google Scholar 

  • Cockerham, G. and MacArthur, A. W., 1956. A note on clonal variation in the potato variety Majestic. Ann. Rep. 1956 Scott. Plant Br. Stat. p. 23–26.

  • Conger, A. D., 1957. Some cytogenetic aspects of the effects of plant irradiation. Proc. 9th. Oak Ridge Regional Symposium, p. 59–62.

  • Conger, A. D., 1958. The fate of metaphase exchanges. (Tradescantia). Proc. 10th Int. Congr. Genetics, Montreal, II, p. 57–58.

    Google Scholar 

  • Conger, A. D. and Fairchild, L. M., 1952. Breakage of chromosomes by oxygen. Proc. Nat. Ac. Sc. 38, p. 289–299.

    Google Scholar 

  • Craig, E. M., 1958. Point mutation, its rate and biochemical effects, considered in relation to senescence. Proc. 10th Int. Congr. Genetics, Montreal, Vol. II, p. 60–61.

    Google Scholar 

  • Cuany, R. L., Sparrow, A. H., and Jahn, A. H., 1958. Spontaneous and radiation-induced somatic mutation rates in Antirrhinum, Petunia, Tradescantia, and Lilium. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 62–63.

    Google Scholar 

  • Cuany, R. L., Sparrow, A. H. and Pond, V., 1958. Genetic response of Antirrhinum majus to acute and chronic plant irradiation. Zeitschr. Vererbungsl. 89, p. 7–13.

    Google Scholar 

  • Cullinan, F. P., 1955. Current trends in horticultural research in the United States. Rep. 14th Int. Hort. Congr., The Hague-Scheveningen, 1955, p. 1–13.

  • Curtis, H. J., Delihas, N., Caldecott, R. S., and Konzak, C. F., 1958. Modification of radiation damage in dormant seeds by storage. Radiation Research 8: p. 526–534.

    Google Scholar 

  • d'Amato, F., 1950. The chromosome breaking activity of chemicals as studied by the Allium cepa test. Publ. Staz. Zool. Nap. (Suppl.) 22, 16pp.

  • d'Amato, F., 1951. Nuovi dati sull' attività mutagena dell' Acridina. Caryologi 3, p. 311–326.

    Google Scholar 

  • d'Amato, F., 1952. The problem of the origin of spontaneous mutations. Caryologia 5, p. 1–13.

    Google Scholar 

  • d'Amato, F. and d'Amato-Avanzi, M. G., 1954. The chromosome-breaking effect of coumarin derivatives in the Allium test. Caryologia 1, p. 134–150.

    Google Scholar 

  • d'Amato, F. e Avanzi, S., 1953–'54. Quarto contributo alla conoscenza dell'attività mutagena dei derivati dell'acridina. Caryologia 1, p. 77–89 (with Engl. summ.).

    Google Scholar 

  • d'Amato, F. and Hoffmann-Ostenhof, O., 1956. Metabolism and spontaneous mutations in plants. (lit.: seed aging, mutagenic substances). Adv. in Genetics 8, p. 1–28.

    Google Scholar 

  • d'Amato, F. e Moschini, E., 1959. Effetti morfologici e genitici di radiazioni ionizzanti nelle varietà di grano “Cappelli” e “Brescia”. Caryologia 12, p. 317–337.

    Google Scholar 

  • Darlington, C. D. and Koller, P. C., 1947. The chemical breakage of chromosomes. Heredity 1, p. 187–221.

    Google Scholar 

  • Darlington, C. D. and La Cour, L. F., 1952. The classification of radiation effects at meiosis. Heredity Suppl. 6, p. 41–56.

    Google Scholar 

  • Darlington, C. D. and Mc Leish, J., 1951. Action of maleic hydrazide on the cell. Nature 167.

  • Darlington, C. D. and Wylie, A. P., 1952. A dicentric cyclus in Narcissus. Heredity Suppl. 6, p. 197–213.

    Google Scholar 

  • Das, K., 1955. Cytogenetic studies of partial sterility in X-ray irradiated barley. Ind. Journ. Genet. Pl. Breeding 15, p. 99–111.

    Google Scholar 

  • Davidson, D., 1957. The irradiation of dividing cells. I. The effects of X-rays on prophase chromosomes. (Vicia). Chromosoma 9, p. 39–60.

    Google Scholar 

  • Demerec, M., 1948. Chemical mutagens. Proc. 8th Int. Congr. Genet., Stockholm, Hereditas Suppl. p. 201–209.

  • Demerec, M., Bertani, G. and Flint, J., 1951. A survey of chemicals for mutagenic action on Escherichia coli. Amer. Nat. 85, p. 119–136.

    Google Scholar 

  • Demerec, M. and Hanson, J., 1951. Mutagenic action of manganous chloride. Cold Spring Harbor Symp. Quant. Biol. 16, p. 215–228.

    Google Scholar 

  • Dempster, E. R., Lerner, I. M. and Inouye, N., 1958. Fertility, viability and sex ratio of the immediate progeny from X-irradiated sperm in chickens. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 68.

  • Derenne, P., 1953. Effets morphologiques, physiologiques dus à l'action de l'isopropylphénylcarbamate sur les genres Allium, Vicia et Hordeum. Bull. Inst. Agron. et Stat. Rech. de Gembloux 21, p. 37–57.

    Google Scholar 

  • Deschner, E., Sparrow, A. H., 1955. Chromosome rejoining capacity with respect to breakage sensitivity to X-rays and thermal neutrons. Genetics, 40, p. 460–475.

    Google Scholar 

  • Deshpande, R. B. and Jeswani, L. M., 1952. A prostrate mutant in pigeon pea (Cajanus cajan (L.) Millsp.)—a possible soil conservation plant. Ind. Journ. Gen. and Plant Breeding 12, p. 50–51.

    Google Scholar 

  • Deufel, J., 1952. Auslösung von Chromosomenmutationen durch äthylurethan in Abhängigkeit von der Konzentration. Chromosoma 4, p. 611–620.

    Google Scholar 

  • Dickey, F. H., Cleland, G. H. and Lotz, C., 1949. The role of organic peroxides in the induction of mutations. Proc. Nat. Ac. Sc. Wash. 35, p. 581–586.

    Google Scholar 

  • Dirks, V. A., Ross, J. G. and Harpstead, D. D., 1986. Colchicine-induced true-breeding chimeral sectors in flax. J. Heredity 47, p. 229–233.

    Google Scholar 

  • Di Scalea, R., 1956. Un agricoltore-scienziato, Alberto Pirovano. (electromagnetic fields etc. on fruit trees). Agricoltura 5, p. 45–48.

    Google Scholar 

  • Dollinger, E. J., 1954. Studies on induced mutations in maize. Genetics 39, p. 750–766.

    Google Scholar 

  • Dona'dalle rose, A., 1959. Aberrazioni cromosomiche da radiazioni ionizzanti su glomeruli di barbatietole (in pr.). Genetica Agraria 12.

  • Döring, H. and Stubbe, H., 1938. Die Bedeutung des Ernährungszustandes (Phosphormangel) für die strahleninduzierte Mutabilität bei Antirrhinum majus. Z. I.A.V. 75, p. 352–357.

    Google Scholar 

  • Dorst, J. C., 1952. Two remarkable bud-sports in the potato variety Rode Star. Euphytica 1, p. 184–186.

    Google Scholar 

  • Down, E. E. and Andersen, A. L., 1956. Agronomic use of an X-ray induced mutant. (bean). Science 124, p. 223–224.

    Google Scholar 

  • Dowrick, G. J. and Williams, W., 1958. Experiments on the induction of mutations in crop plants. Heredity 12, p. 393.

    Google Scholar 

  • Dubinin, N. P., 1958. Mechanism of radiation effects and the problem of radiosensitivity. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva. 1958.

  • Durrant, A., 1958. Environmentally induced inherited changes in flax. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 71–72.

    Google Scholar 

  • Ebert, M., 1954. Hydrogen peroxide production under varying conditions of radiation. Symp. de Radiobiologie, Liège, 1954, p. 30–38.

  • Edington, C. W. and Randolph, M. L., 1958. A comparison of the relative effectiveness of radiations of different average linear energy transfer on the induction of dominant and recessive lethals in Drosophila. Genetics 43, p. 715–727.

    Google Scholar 

  • Ehrenberg, L. e.a. 1949. Radiophosphorus, seedling lethality and chromosome disturbances. Hereditas 35, p. 469–489.

    Google Scholar 

  • Ehrenberg, L., 1953. Mutation studies with radioactive isotopes. Radioisotope Techniques, Vol. I, p. 452–461. Her Majesty's Stat. Off., London.

    Google Scholar 

  • Ehrenberg, L., 1954. The influence of postradiation factors on effects produced in barley. Symp. de Radiobiologie, Liège 1954, p. 285–289.

  • Ehrenberg, L., 1955. Factors influencing radiation induced lethality, sterility, and mutations in barley. Hereditas 41, p. 123–146.

    Google Scholar 

  • Ehrenberg, L., 1955. Irradiation effects in solids of different water content. Radiobiol. Conf. Cambridge, p. 114–118.

  • Ehrenberg, L., 1956. Gamma-kanoner i växtförädling och strålningsbiologi. Svensk Naturvetenskap, 1956, 13 pp.

  • Ehrenberg, L. and Andersson, G., 1954. Probable side-effect of nuclear reactions in the biological action of fast protons. Nature 173, p. 1086.

    Google Scholar 

  • Ehrenberg, A. and Ehrenberg, L., 1958. The decay of X-ray induced free radicals in plant seeds and starch. Arkiv Fysik 14, p. 133–141.

    Google Scholar 

  • Ehrenberg, L. and Granhall, I., 1952. Effects of beta-radiating isotopes in fruit trees. Hereditas 38, p. 385–419.

    Google Scholar 

  • Ehrenberg, L., Granhall, I., Gustafsson, Å. and Nybom, N., 1954. Acute and chronic 60Co gamma irradiation of plants. Radioisotope Conf. 1954, Vol. I, p.391–396.

    Google Scholar 

  • Ehrenberg, L. and Gustafsson, Å., 1957. On the mutagenic action of ethylene oxide and diepoxybutane in barley. Hereditas 43, p. 595–602.

    Google Scholar 

  • Ehrenberg, L., Gustafsson, Å and Lundquist, U., 1956. Chemically induced mutation and sterility in barley. Acta Chem. Scand. 10, p. 492–494.

    Google Scholar 

  • Ehrenberg, L., Gustafsson, Å. and Lundquist, U., 1959. The mutagenic effects of ionizing radiations and reactive ethylene derivatives in barley. Hereditas 45, 1959, p. 351–368.

    Google Scholar 

  • Ehrenberg, L., Gustafsson, Å., Lundquist, U., Nybom, N., 1953. Irradiation effects, seed soaking and oxygen pressure in barley. Hereditas 39, p. 493–504.

    Google Scholar 

  • Ehrenberg, L., Jaarma, M., and Zimmer, E. C., 1957. Influence of water content on effects of ionizing radiations in starch. Acta Chem. Scand. 11, p. 950–956.

    Google Scholar 

  • Ehrenberg, L. and Lundqvist, U., 1957. Post-irradiation effects on X-ray-induced mutation in barley seeds. Hereditas 43, p. 390–402.

    Google Scholar 

  • Ehrenberg, L., Lundquist, U., and Ström, G., 1958. The mutagenic action of ethylene imine in barley. Hereditas 44, p. 330–336.

    Google Scholar 

  • Ehrenberg, L., Moutschen-Dahmen, J. and Moutschen-Dahmen, M., 1957. Aberrations chromosomiques produites dans des graines par de hautes pressions d'oxygène. Acta Chem. Scand. 11, p. 1428–1429.

    Google Scholar 

  • Ehrenberg, L. and Nybom, N., 1954. Ion density and biological effectiveness of radiations. Acta Agric. Scand. 4, 1954, p. 396–418.

    Google Scholar 

  • Ehrenberg, L. and Saeland, E., 1954. Chemical dosimetry of radiations giving different ion densities. Jener Publ. No. 8.

  • Einset, J., 1956. Wanted... a better concord grape. Amer. Fruit Gr. 76, p. 15.

  • Elliott, F. C., 1957. X-ray induced translocation of Agropyron stem rust resistance to common wheat, Journ. Heredity 48, p. 77–81.

    Google Scholar 

  • Elliott, F. C., 1957. Induced translocations in wheat. Wheat Information Service 5, p. 4.

    Google Scholar 

  • Elmore, D. T., Gulland, J. M., Jordan, D. O. and Taylor, H. F. W., 1948. The reaction of nucleic acids with mustard gas. Biochem. J. 42, p. 308–316.

    Google Scholar 

  • Emmerling, M. H., 1955. A comparison of X-ray and ultraviolet effects on chromosomes of Zea Mays. Genetics 40, p. 697–714.

    Google Scholar 

  • Endrizzi, J. E., 1958. Cytogenetic study of frego bract and a translocation in cotton. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 76.

  • Evans, H. J. and Neary, G. J., 1958. The meaning of the oxygen effect in the interpretation of chromatid aberrations. Radiation Res. 9, p. 111.

    Google Scholar 

  • Eversole, R. A. and Tatum, E. L., 1956. Chemical alteration of crossing-over frequency in Chlamydomonas. Proc. Nat. Ac. Sc. Wash. 42, p. 68–73.

    Google Scholar 

  • Fabergé, A. C., 1951. Ultraviolet induced chromosome aberrations in maize. Genetics 36, p. 549–550.

    Google Scholar 

  • Fabergé, A. C., 1956. The analysis of induced chromosome aberrations by maize endosperm phenotypes. Z.I.A.V. 87, p. 392–420.

    Google Scholar 

  • Fabergé, A. C., 1957. A method for treating wheat pollen with ultraviolet radiation for genetic experiments. Genetics 42, p. 618–622.

    Google Scholar 

  • Fabergé, A. C., 1958. Relation between chromatid-type and chromosome-type breakage-fusion-bridge cycles in maize endosperm. Genetics 43, p. 737–749.

    Google Scholar 

  • Fabergé, A. C., 1959. Production by alpha particles of functionally stable broken chromosome ends in maize. Genetics 44, p. 279–285.

    Google Scholar 

  • Fahmy, O. G. and Fahmy, M. J., 1956. Comparison of chemically and X-ray-induced mutations in Drosophila melanogaster. Proc. 5th Int. Conf. Radiobiol., Stockholm 1956, p. 437–448.

  • Fahmy, O. G. and Fahmy, M. J., 1957. Further evidence for differential effects of mutagens in Drosophila melanogaster. Journ. Genetics 55, p. 280–287.

    Google Scholar 

  • Fahmy, O. G. and Fahmy, M. J., 1958. Differential cell-stage response to mutagenes. (Drosophila). Proc. 10th Int. Congr. Genetics, Montreal, II, p. 78.

  • Favret, E. A., 1950. Mutaciones inducidas con formaldehida en cebada. Rev. Argentina de Agron. 17, p. 260–262.

    Google Scholar 

  • Favret, E. A., 1957. Mutations in barley seeds induced by acute treatment by gamma rays of cobalt 60. United Nat., Gen. Ass. Sc. Com. Eff. Atom. Rad., Genève.

  • Favret, E., 1959. Induced mutations for resistance to diseases (in pr.). Genetica Agraria 12.

  • Favret, E. A. Rodriguez, A. A., 1957. Induccion de mutaciones en cebada con tratamientos de formaldehyda. Revista Investig. Agric. 11, p. 305–307.

    Google Scholar 

  • Favret, E. A. Rodriguez, A. A., 1957. Mutabilidad espontánea en cebada (Spanish). Rev. Investig. Agricolas 11, p. 309–311.

    Google Scholar 

  • Favret, E. A. Rodriguez, A. A., 1957. Inducción de mutaciones con tratamientos agudos de radiaciones gammade cobalto 60 en semillas de cebada. Revista Investig. Agric. 11, p. 313–316.

    Google Scholar 

  • Fetner, R. H., 1956. A study of factors affecting X-ray induced chromosome aberrations in the microspores of Tradescantia paludosa. Radiation Res. 4, p. 510–518.

    Google Scholar 

  • Flagg, R. O., 1958. A mutation and an inversion in Rhoeo discolor. Journ. of Hered. 49, p. 185–188.

    Google Scholar 

  • Flor, H. H., 1957. Mutations in flax rust induced by ultraviolet radiation. Science 124, p. 888–889.

    Google Scholar 

  • Flor, H. H., 1957. X-ray induced mutations for pathogenicity in the F1 of race 22 × race 1 of the flax rust fungus. Phytopath. 47, p. 11.

    Google Scholar 

  • Flor, H. H., 1958. Mutation to wider virulence in Melampsora lini. Phytopath. 48, p. 297–301.

    Google Scholar 

  • Ford, C. F., 1948. Chromosome breakage in nitrogen mustard treated Vicia faba root-tip cells. Proc. 8th Int. Congr. Genetics, Stockholm, Hereditas Suppl., p. 570–571.

  • Foster, A. E., Ross, J. G. and Franzke, C. J., 1957. Genetic behavior of colchicine-induced mutants in sorghum. Abstr. Ann. Meet. Am. Soc. Agronomy, Cincinnati 1956, (mimeogr.) p. 66–67.

  • Frahm-Leliveld, J. A., 1953. The topographical situation of gene centers and its influence on the evolution of species. Proc. 9th Int. Congr. Genetics, Bellagio, Caryologia 6, Suppl. p. 1141–1143.

    Google Scholar 

  • Franzke, C. J. and Ross, J. G., 1956. Colchicine induction of new true-breeding mutants from previously induced true-breeding mutants in Sorghum. Genetics 41, p. 643–644.

    Google Scholar 

  • Franzke, C. J. and Ross, J. G., 1957. A lineal series of mutants induced by colchicine treatment (Sorghum). Journ. Heredity 48, p. 47–50.

    Google Scholar 

  • Freese, E., 1958. Specific mutations of phage T4 induced by isoadenine. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 87–88.

    Google Scholar 

  • Freisleben, R. und Lein, A., 1944. Röntgeninduzierte Mutationen by Gerste. Der Züchter 16, p. 49–64.

    Google Scholar 

  • Freisleben, R. und Lein, A., 1942. Über die Auffindung einer mehltauresistenten Mutante nach Röntgenbestrahlung einer anfälligen reinen Linie von Sommergerste. Naturwiss. 30, p. 608.

    Google Scholar 

  • Frey, K. J., 1954. Artificially induced mutations in oats. Agron. Journ. 46, p. 49.

    Google Scholar 

  • Frey, K. J., 1955. Agronomic mutations in oats induced by X-ray treatments. Agron. Journ. 47, p. 207–210.

    Google Scholar 

  • Frey, K. J. and Browning, J. A., 1955. Mutations for stem rust resistance induced in oats by X-ray treatment. Phytopathology 45, p. 490–492.

    Google Scholar 

  • Fröier, K., 1946. Genetical studies on the chlorophyll apparatus in oats and wheat. Hereditas 32, p. 297–406.

    Google Scholar 

  • Fröier, K., 1954. Aspects of the agricultural value of certain barley X-ray mutations etc. Acta Agric. Scand. 4, p. 515–543.

    Google Scholar 

  • Fröier, K. and Gustafsson, Å., 1944. The influence of seed size and hulls on X-ray susceptibility in cereals. Hereditas 30, p. 583–589.

    Google Scholar 

  • Fujii, T., 1957. Mutations in Einkorn wheat induced by X-rays. III. Double recessive plants in a cross between basi-viridis II and chlorina. Seiken Zihô 8, p. 33–36.

    Google Scholar 

  • Fujii, T., 1957. Studies on chlorophyll mutants in diploid wheat induced by radiation. Wheat Inform. Serv. 6, p. 8.

    Google Scholar 

  • Fujii, T., 1958. Crosses between various X-ray induced recessive mutants in wheat. Wheat Inf. Serv. 7, p. 10–11.

    Google Scholar 

  • Gaul, H., 1957. Die Wirkung von Röntgenstrahlen in Verbindung mit CO2, Colchicin und Hitze auf Gerste. Zeitschr. f. Pflanzenz. 38, p. 397–429.

    Google Scholar 

  • Gaul, H., 1957. Zur Frage der ontogenetischen Elimination mutierter Zellen nach Röntgenbestrahlung von Samen. Naturwiss. 21, p. 566.

    Google Scholar 

  • Gaul, H., 1957. Die verschiedenen Bezugssysteme der Mutationshäufigkeit bei Pflanzen, angewendet auf Dosis-Effectkurven. Zeitschr. f. Pflanzenz. 38, p. 63–76.

    Google Scholar 

  • Gaul, H., 1957. Die Bestimmung der Frequenz von Punktmutationen bei Pflanzen. Zeitschr. f. Naturf. 12, p. 557–559.

    Google Scholar 

  • Gaul, H., 1957. Über die Bedeutung der Fixierungszeit bei der zytologischen Untersuchung von Sproszspitzen nach Röntgenbestrahlung. Naturwiss. 44, p. 403.

    Google Scholar 

  • Gaul, H., 1958. Über die gegenseitige Unabhängigkeit der Chromosomen- und Punktmutationen. Zeitschr. f. Pflanzenz. 40, p. 151–188.

    Google Scholar 

  • Gaul, H., 1958. Über die Chimärenbildung in Gerstenpflanzen nach Röntgenbestrahlung von Samen. Flora 147, p. 207–241.

    Google Scholar 

  • Gaul, H., 1958. Genetischer, cytologischer und physiologischer Einfluss von Dosisfraktionierung bei Röntgenbestrahlung auf Gerste. (Manuscript).

  • Gelin, O. E. V., 1953. Mitotische Störungsfrequenzen in Röntgenbestrahlter Gerste. Agri. Hort. Genet. 11, p. 66–81.

    Google Scholar 

  • Gelin, O. E. V., 1954. X-ray mutants in peas and vetches. Acta Agric. Scand. 4, p. 558–568.

    Google Scholar 

  • Gelin, O. E. V., 1955. Studies on the X-ray mutation Strål pea. Agri. Hort. Genet. 13, p. 183–193.

    Google Scholar 

  • Gelin, O. E. V., 1956. Conditions affecting radiation induced cytological changes in barley. Agri. Hort. Genet. 14, p. 137–147.

    Google Scholar 

  • Gelin, O. E. V., 1956. The meiotic response to the mitotic disturbances in X-rayed barley. Agri. Hort. Genet. 14, p. 107–126.

    Google Scholar 

  • Gelin, O. E. V., 1959. Experimental mutation in Pisum (in pr.). Genetica Agraria 12.

  • Gelin, O. E. V., Ehrenberg, L. and Blixt, S., 1958. Genetically conditioned influences on radiation sensitivity in peas. Agri Hort. Genetica 16, p. 78–102.

    Google Scholar 

  • Gelin, O. E. V., Ehrenberg, L., and Blixt, S., 1959. Quantitative studies of induced mutations in peas. II. Mutagenic effects of ethylene imine and oxygen. Agri Hort. Genet. 17, p. 265–274.

    Google Scholar 

  • Genter, C. F. and Brown, H. M., 1941. X-ray studies on the field bean. J. Heredity 32, p. 39–44.

    Google Scholar 

  • Gerschman, R., Gilbert, D. L., e.a., 1954. Oxygen poisoning and X-irradiation: A mechanism in common. Science 119, p. 623–626.

    Google Scholar 

  • Gilbert, D. L., Gerschman, R., e.a., 1957. The influence of high oxygen pressures on the viscosity of solutions of sodium desoxyribonucleic acid and of sodium alginate. J. Am. Chem. Soc. 79, p. 5677–5680.

    Google Scholar 

  • Giles, N. H., 1954. Radiation-induced chromosome aberrations in Tradescantia. Radiation Biology I, p. 713–761.

    Google Scholar 

  • Giles, N. H., 1955. Forward and back mutation at specific loci in Neurospora. Brookhaven Symp. Biol. 8, p. 103–123.

    Google Scholar 

  • Giles, N. H., 1958. Mutations at specific loci in Neurospora, Proc. 10th Int. Congr. Genetics, Montreal Vol. 1.

  • Giles, N. H. and Partridge, C. W. H., 1956. Genetic and biochemical studies of mutants and revertants in adenine-specific strains of Neurospora crassa. Genetics 41, p. 645.

    Google Scholar 

  • Gladstones, J. S., 1958. Induction of mutation in the West-Australian blue lupin (Lupinus digitatus Forsk.) by X-irradiation. Austr. Journ. Agric. Res. 9, p. 473–482.

    Google Scholar 

  • Gläss, E., 1955, 1956. Untersuchungen über die Einwirkung von Schwermetallsalzen auf die Wurzelspitzenmitose von Vicia Faba. Zeitschr. f. Bot. 43, p. 359–403, 44, p. 1–58.

    Google Scholar 

  • Gläss, E., 1956. Die Verteilung von Fragmentationen und achromatischen Stellen auf den Chromosomen von Vicia faba nach Behandlung mit Schwermetallsalzen. Chromosoma 8, p. 260–284.

    Google Scholar 

  • Glass, R. and Mettler, L. E., 1958. The oxygen effect in respect to point mutations in Drosophila melanogaster. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 97–98.

    Google Scholar 

  • Glassman, E., and Mitchell, H. K., Mutants of Drosophila melanogaster deficient in xanthine dehydrogenase. Genetics 44, p. 153–162.

  • Goodgal, S. H., 1958. Expression and segregation in Hemophilus influenzae transformations. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 100.

  • Gopal-Ayengar, A. R., 1955. Cytological and cytochemical effects of radiation (and radiomimetic substances) in actively proliferating biological systems. Proc. 1st Int. Conf. Peaceful Uses Atomic Energy, Geneva, Vol. 11, p. 219–226.

    Google Scholar 

  • Gopinath, D. M. and Burnham, C. R., 1956. A cytogenetic study in maize of deficiency-duplication produced by crossing interchanges involving the same chromosomes. Genetics 41, p. 381–395.

    Google Scholar 

  • Gori, C. e Zucconi, L., 1957–'58. L'azione citologica indotta da un gruppo di composti inorganici su Allium Cepa. (with Engl. summ.) Caryologia 10, p. 29–45.

    Google Scholar 

  • Gottschalk, W., 1951. Der Vergleich von röntgen und chemisch induzierten Chromosomenmutationen im Pachytän von Solanum lycopersicum. Chromosoma 4, p. 342–358.

    Google Scholar 

  • Gowen, J. W. and Umaerus, M., 1958. Biological recovery from radiation effects as related to genetics. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 101–102.

    Google Scholar 

  • Granhall, I., 1953. X-ray mutations in apples and pears. Hereditas 39, p. 149–155.

    Google Scholar 

  • Granhall, I., 1954. Spontaneous and induced bud mutations in fruit trees. Acta Agric. Scand. 4, p. 594–600.

    Google Scholar 

  • Granhall, I., Ehrenberg, L. and Borenius, S., 1953. Experiments with chronic gamma irradiation on growing plants. Bot. Notiser, Häfte 2, 1953, p. 155–162.

    Google Scholar 

  • Gray, L. H., 1952. Characteristics of chromosome breakage by different agents. Heredity Suppl. 6, p. 311–315.

    Google Scholar 

  • Green, M. M., 1959. Reverse mutation in Drosophila and the status of the particulate gene. Genetica 29, p. 1–38.

    Google Scholar 

  • Greer, S. B., 1958. Growth inhibitors and their antagonists as mutagens and antimutagens in Escherichia coli. J. General Microbiol. 18, p. 543–564.

    Google Scholar 

  • Gregory, W. C., 1955. X-ray breeding of peanuts (Arachis hypogaea L.). Agron. Journ. 47, p. 396–399.

    Google Scholar 

  • Gregory, W. C., 1955. The comparative effects of radiation and hybridization in plant breeding. Proc. First Intern. Conf. Peaceful Uses Atomic Energy 12, p. 48–51.

    Google Scholar 

  • Gregory, W. C., 1956. Induction of useful mutations in the peanut. Brookhaven Symp. Biol. 9, p. 177–190.

    Google Scholar 

  • Gregory, W. C., 1957. Radiosensitivity studies in peanuts (Arachis hypogaea L.). Proc. Intern. Genetics Symp., Tokyo and Kyoto 1956, p. 243–247.

  • Gregory, W. C., 1957. The genetical foundations for mutation breeding. Agron. Abs. 49, p. 54.

    Google Scholar 

  • Gregory, W. C., 1957. Progress in establishing the effectiveness of radiation in breeding peanuts. Proc. 9th. Oak Ridge Regional Symp. p. 36–48.

  • Gunckel, J. E., Morrow, I. B., Sparrow, A. H. and Christensen, E., 1953. Variations in the floral morphology of normal and irradiated plants of Tradescantia paludosa. Bull. Tor. Bot. Club 80, p. 445–456.

    Google Scholar 

  • Gunthardt, H. e.a., 1953. Studies on aged seeds II. Relation of age of seeds to cytogenetic effects. Agron. Journ. 45, p. 438–441.

    Google Scholar 

  • Gustafsson, Å., 1940. The mutation system of the chlorophyll apparatus. Lund Univ. Årsskr. 36, p. 1–40.

    Google Scholar 

  • Gustafsson, Å., 1944. The X-ray resistance of dormant seeds in some agricultural plants. Hereditas 30, p. 165–178.

    Google Scholar 

  • Gustafsson, Å., 1953. The cooperation of genotypes in barley. Hereditas 39, p. 1–18.

    Google Scholar 

  • Gustafsson, Å., 1954. Swedish mutation work in plants: background and present organization. Acta Agric. Scand. 4, p. 361–364.

    Google Scholar 

  • Gustafsson, Å., and Ehrenberg, L., 1959. Ethylene imine: a new tool for plant breeders. The New Scientist, 1959.

  • Gustafsson, Å. and Mac Key, J., 1948. The genetical effects of mustard gas substances and neutrons. Hereditas 34, p. 371–386.

    Google Scholar 

  • Gustafsson, Å and Mac Key, J., 1948. Mutation work at Svalöf. “Svalöf 1886–1946”, Lund, p. 338–357.

  • Gustafsson, Å. and Nybom, N., 1950. The viability reaction of some induced and spontaneous mutations in barley. Hereditas 36, p. 113–133.

    Google Scholar 

  • Haan, H. de, 1951. Het optreden van mutatie bij de aardappel. Meded. Ned. Alg. Keuringsd. land-bouwz. en aardappelpootgoed. 8, p. 3–4.

    Google Scholar 

  • Haas, F. L. and Doudney, C. O., 1958. Relations between nucleic acid and protein synthesis in ultraviolet-induced mutation in bacteria. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 108.

  • Haas, F. L., Dudgeon, E., Clayton, F. E. and Stone, W. S., 1954. Measurement and control of some direct and indirect effects of X-radiation (Drosophila). Genetics, 39, p. 453–471.

    Google Scholar 

  • Haas, H. T. A., 1941. Über die Beeinflussung des Zellkerns durch Pharmaca. Arch. exp. Path. Pharm. 197, p. 284–291.

    Google Scholar 

  • Haberlandt, G. L., Schreier, K. and Altman, K. I., 1957. Cellular destruction and protein break-down induced by exposure to X-rays, II. Further studies using the concept of the dynamic glycine pool. Biochim. et Bioph. Acta (Amsterdam) 25, p. 237–241.

    Google Scholar 

  • Hackbarth, J., 1955. Versuch mit Röntgenbestrahlung zur Mutationsauslösung bei Lupinus luteus, L. angustifolius und L. albus. Zeitschr. f. Pflanzenz. 34, p. 375–390.

    Google Scholar 

  • Hackbarth, J., 1957. Die Gene der Lupinenarten. III. Weisse Lupine (Lup. albus). Zeitschr. Pflanzenz. 37, p. 185–191.

    Google Scholar 

  • Haddow, A., 1956. Comparative studies of the biological effects of ionizing radiation and of radiomimetic chemical agents. Intern. Conf. Peaceful Use Atomic Energy, 11.

  • Haddow, A., 1958. Chemical carcinogens and their modes of action. Brit. Med. Bull. 14, p. 79–92.

    Google Scholar 

  • Hadorn, E. and Niggli, H., 1946. Mutations in Drosophila after chemical treatment of gonads in vitro. Nature 157, p. 162–163.

    Google Scholar 

  • Hagberg, A., 1953. Heterozygosity in erectoides mutations in barley. Hereditas 39, p. 161–178.

    Google Scholar 

  • Hagberg, A., 1954. Cytogenetic analysis of “erectoides” mutations in barley. Acta Agric. Scand. 4, p. 472–490.

    Google Scholar 

  • Hagberg, A., 1954. Cytogenetic studies on “erectoides” mutations in barley. Proc. 9th Intern. Congr. Genet. Bellagio, Caryologia 6 Suppl. p. 1092.

  • Hagberg, A., 1958. Cytogenetik einiger Gerstenmutanten. Der Züchter 28, p. 32–36.

    Google Scholar 

  • Hagberg, A., 1959. Cytogenetic analysis of induced mutations (in pr.). Genetica Agraria 12.

  • Hagberg, A., Gustafsson, Å. and Ehrenberg, L., 1958. Sparsely contra densely ionizing radiations and the origin of erectoid mutations in barley. Hereditas 44, p. 523–530.

    Google Scholar 

  • Hagberg, A. and Nybom, N., 1954. Reaction of potatoes to X-irradiation and radiophosphorus. Acta Agric. Scand. 4, p. 578–584.

    Google Scholar 

  • Hagberg, A., Nybom, N. and Gustafsson, Å., 1952. Allelism of erectoides mutations in barley. Hereditas 38, p. 510–512.

    Google Scholar 

  • Hagberg, A., and Tjio, J. H., 1952. Cytological studies on some homozygous translocations in barley. Anales Est. Exp. de Aula Dei 2, p. 215–223.

    Google Scholar 

  • Hair, J. B., 1952. The origin of new chromosomes in Agropyron. Heredity Suppl. 6, p. 215–233.

    Google Scholar 

  • Hänsel, H. and Zakovsky, J., 1956. Mildew resistant barley mutants induced by X-rays. Euphytica 5, p. 347–352.

    Google Scholar 

  • Hänsel, H. und Zakovsky, J., 1956. Röntgeninduzierte Mutanten der Vollkorngerste (Hordeum distichum nutans). I. Bestrahlung und Auslese auf Mehltauresistenz. Die Bodenkultur (Wien) 9, p. 50–64.

    Google Scholar 

  • Harpstead, D. D., Ross, J. G. and Franzke, C. J., 1954. The nature of chromatin changes of colchicine-induced variants in Sorghum. J. Heredity 45, p. 255–258.

    Google Scholar 

  • Haskins, F. A., Davidson, M. F., and Beers, R. J., 1958. Influence of seed irradiation with X-rays and thermal neutrons upon cell size and mitotic activity in root tips of maize. Am. Naturalist 92, p. 365–369.

    Google Scholar 

  • Hayden, B. and Smith, L., 1949. The relation of atmosphere to biological effects of X-rays. Genetics 34, p. 26–43.

    Google Scholar 

  • Herskovitz, I. H., 1951. The genetic basis of X-ray inducessive lethal mutations. Genetics 36, p. 356–363.

    Google Scholar 

  • Hertzsch, W., 1957. Mutationsversuch mit Rohrglanzgras (Phalaris arundinacea). Zeitschr. Pflanzenzüchtung 37, p. 263–279.

    Google Scholar 

  • Heslot, H. et Ferrary, R., 1958. Action génétique comparée des radiations et de quelques mutagènes sur l'orge. Ann. de l'Inst. Nat. Agron. Paris, 44, p. 2–20.

    Google Scholar 

  • Hitier, H., 1955. Les recherches récentes dans le domaine de la génétique des Nicotiana. First Intern. Scient. Congr. on Tobacco, Amsterdam 1955, p. 175–184.

  • Hitier, H. and Izard, C., 1952. Contribution à l'étude de l'action mutagène de l'essence de moutarde. Ann. Inst. Exp. Tabac Bergerac 1, p. 1–16.

    Google Scholar 

  • Hoffmann, W., 1946. Helle Stengel — eine wertvolle Mutation des Hanfes (Cannabis sativa L.). Der Züchter 17/18, p. 56–58.

    Google Scholar 

  • Hoffmann, W., 1954. Aussichten der Mutationszüchtung zur Verbesserung der Qualität des Weizens. Die Qualitätszüchtung von Brotgetreide. Bericht Tagung Arbeitsgem. Getreideforschung, Detmold, 1954, p. 46–54.

  • Hoffmann, W. und Zoschke, U., 1955. Röntgenmutationen beim Flachs (Linum usitatissimum). Der Züchter 25, p. 199–206.

    Google Scholar 

  • Hollaender, A., 1945. The mechanism of radiation effects and the use of radiation for the production of mutations with improved fermentation. Ann. Missouri Bot. Garden 32, p. 165–178.

    Google Scholar 

  • Holm, G., 1954. Chlorophyll mutations in barley. Acta Agric. Scand. 4, p. 457–470.

    Google Scholar 

  • Holmgren, P., 1956. Some observations on the amount of protein and non-protein nitrogen in two pigment mutations of barley. Annaler Kungl. Lantbrukshögsk. 22, p. 353–357.

    Google Scholar 

  • Horlacher, W. R. and Killough, D. T., 1933. Progressive mutations induced in Gossypium hirsutum by radiations. Am. Naturalist 67, p. 532–538.

    Google Scholar 

  • Hough, L. F. and Weaver, G. M., 1958. Irradiation as an aid in fruit variety improvement. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 124.

  • Hughes, C. and Spragg, S. P., 1958. The inhibition of mitosis by the reaction of maleic hydrazide with sulphydryl groups. (Pisum). Biochem. J. 70, p. 205–212.

    Google Scholar 

  • Huskins, C. L., 1946. Fatuoid, speltoid and related mutations of oats and wheat. Bot. Rev. 12, p. 457–514.

    Google Scholar 

  • Ivanoff, S. S., 1957. The Mid-South oat variety. A victoria-blight resistant mutant. Journ. Heredity 48, p. 101–107.

    Google Scholar 

  • Ives, P. T., 1950. The importance of mutation rate genes in evolution. Evolution 4, p. 236–252.

    Google Scholar 

  • Jackson, W. D. and Barber, H. N., 1958. Patterns of chromosome breakage after irradiation and ageing. Heredity 12, p. 1–25.

    Google Scholar 

  • Jank, H., 1957. Experimentelle Mutationsauslösung durch Röntgenstrahlen by Chrysanthemum indicum. Der Züchter 27, p. 223–231.

    Google Scholar 

  • Jank, H., 1957. Zur Anwendung der experimentellen Mutationsauslösung im Zierpflanzenbau. Deutsche Gartenbau 4, p. 210–212.

    Google Scholar 

  • Jenkins, B. C., 1957. Radiation induced stem rust resistant mutants in durum wheat. Robigo, Castelar 1957, no. 3, p. 16–17. (mimeogr.).

  • Jensen, K. A., Kirk, I., Kölmark, G. and Westergaard, M., 1951. Chemically induced mutations in Neurospora. Cold Spring Harbor Symp. Quant. Biol. 16, p. 245–261.

    Google Scholar 

  • Jucci, C., 1959. Possibilita di miglioramento, in foraggere leguminose ed orticole, a mezzo di mutazioni radioindotte e chemioindotte nel batterio radicicolo e nella pianta ospite (in pr.). Genetica Agraria 12.

  • Julén, G., 1958. Über die Effekte der Röntgenbestrahlung bei Poa pratensis. Der Züchter 28, p. 37–40.

    Google Scholar 

  • Kalyanaraman, S. M. e.a., 1956. Inheritance and inter-relation of mutant genes affecting lint length and fibre maturity in G. arboreum. Ind. Cotton Grow. Rev. 10, p. 243–252.

    Google Scholar 

  • Kaplan, R. W., 1951. Chromosomen-und Faktormutationsraten in Gerstenkörnern bei verschiedenartigen Quellungsbehandlungen oder Kälte während oder nach der Röntgenbestrahlungen sowie bei Dosisfraktionierung. Z. I. A. V. 83, p. 347–382.

    Google Scholar 

  • Kaukis, K. and Webster, O. J., 1956. Effects of thermal neutrons on dormant seeds of Sorghum vulgare Per. Agronomy Journal 48, p. 401–406.

    Google Scholar 

  • Kihlman, B., 1949. The effect of purine derivatives on chromosomes. Hereditas 35, p. 393–396.

    Google Scholar 

  • Kihlman, B., 1950. 8-Ethoxycaffeine, an ideal inducer of structural chromosome changes in the root tips of Allium cepa. Exp. Cell. Res. 1, p. 135–138.

    Google Scholar 

  • Kihlman, B., 1951. The permeability of the nuclear envelope and the mode of action of purine derivatives on chromosomes. Symb. Bot. Upsalienses 11, p. 1–37.

    Google Scholar 

  • Kihlman, B., 1952. A survey of purine derivatives as inducers of chromosome changes. Hereditas 38, p. 115–127.

    Google Scholar 

  • Kihlman, B., 1955. Oxygen and the production of chromosome aberrations by chemicals and X-rays. Hereditas 41, p. 384–404.

    Google Scholar 

  • Kihlman, B. and Levan, A., 1949. The cytological effect of caffeine. Hereditas 35, p. 109–111.

    Google Scholar 

  • Kihlman, B. and Levan, A., 1951. Localized chromosome breakage in Vicia faba. Hereditas 37, p. 382–388.

    Google Scholar 

  • Kirby-Smith, J. S. and Craig, D. L., 1957. The induction of chromosome aberrations in Tradescantia by ultraviolet radiation. Genetics 42, p. 176–187.

    Google Scholar 

  • Kirby-Smith, J. S. and Dolphin, G. W., 1958. Chromosome-breakage at high radiation dose-rates. (Tradescantia pollen). Nature 182, p. 270–271.

    Google Scholar 

  • Kirby-Smith, J. S., Sheppard, C. W. and Craig, D. L., 1954. The relative effectiveness of various ionizing radiations on chromosome breakage in Tradescantia. Symp. de Radiobiologie, Liège 1954. p. 262–264.

  • Knapp, E. und Kaplan, R., 1942. Beeinflussung der Mutationsauslösung und anderer Wirkungen der Röntgenstrahlen bei Antirrhinum majus durch Veränderung des Quellungszustandes der zu bestrahlenden Samen. Z. I. A. V. 80, p. 501–550.

    Google Scholar 

  • Knott, D. R., 1958. The effect on wheat of an Agropyron chromosome carrying rust resistance. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 148.

  • Kobayashi, T., 1958. Radiation-induced mutant types in Sesame. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 148–149.

    Google Scholar 

  • Koller, P. C., 1952. The cytological effects of irradiation at low intensities. Heredity Suppl. 6, p. 5–22.

    Google Scholar 

  • Kölmark, G., 1953. Differential response to mutagenes as studied by the Neurospora reverse mutation test. Hereditas 39, p. 270–276.

    Google Scholar 

  • Kölmark, G., 1956. Mutagenic properties of certain esters of inorganic acids investigated by the Neurospora back mutation test. Compt. rend. trav. lab. Carlsberg, Sér. Physiol. 26, p. 205–220.

    Google Scholar 

  • Kölmark, G., 1958. Patterns of interaction between X-rays and chemicals as studied by reverse mutation rates in Neurospora. Radiation Res. 9, p. 140.

    Google Scholar 

  • Kölmark, G. and Giles, N. H., 1955. Comparative studies of monepoxides as inducers of reverse mutations in Neurospora. Genetics 40, p. 890–902.

    Google Scholar 

  • Konzak, C. F., 1954. Stemrust resistance in oats induced by nuclear radiation. Agr. Journal 46, p. 538–540.

    Google Scholar 

  • Konzak, C. F., 1954. Differential sensitivity of soaked barley seeds to X-rays and thermal neutrons. Radiation Research 1, p. 220 (abstr.).

    Google Scholar 

  • Konzak, C. F., 1955. Radiation sensitivity of dormant and germinating barley seeds. Science 122, p. 197–198.

    Google Scholar 

  • Konzak, C. F., 1956. A note on the use of radiation for the production of mutations for Victoria-blight resistance in oats. Phytopath. 46, p. 177–178.

    Google Scholar 

  • Konzak, C. F., 1957. The influence of oxygen on the mutagenic effects of X-rays on maize endosperm loci. Rad. Res. 6, p. 1–10.

    Google Scholar 

  • Konzak, C. F., Borlang, N. E., Acosta, A. and Gibler, J., 1956. Stripe rust resistant mutants obtained from irradiation of Gabo wheat. Phytopath. 46, p. 525–526.

    Google Scholar 

  • Koo, F. K. S., 1958. Induction of somatic mutations in a balanced lethal barley stock by X-rays. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 150–151.

    Google Scholar 

  • Kress, H., 1953. Ergebnisse der Röntgenbestrahlung bei der Gülzower Süszen Gelblupine (Lupinus luteus). Der Züchter 23, p. 168–172.

    Google Scholar 

  • Kronstad, W. E., Nilan, R. A., and Konzak, C. F., 1959. Mutagenic effect of oxygen on barley seeds. Science 129, p. 1618.

    Google Scholar 

  • Kuhl, O. A., Manowitz, B. and Sparrow, A. H., 1955. A potato irradiation pilot plant facility, Nucleonics, 1955.

  • Kumazawa, S. and Honda, F., 1954. Bud-mutations and a consideration on the formation of varieties in taro. Jap. Journ. of Breeding 3, p. 19–21.

    Google Scholar 

  • La Cour, L. F., 1952. The Luzula system analysed by X-rays. Symp. on Chrom. breakage, Heredity Suppl. 6, p. 77–81.

    Google Scholar 

  • La Cour, L. F., 1952. The physiology of chromosome breakage and reunion in Hyacinthus. Heredity Suppl. 6, p. 163–179.

    Google Scholar 

  • Lamprecht, H., 1952. Über Chlorophyllmutanten bei Pisum und die Vererbung einer neuen, goldgelben Mutante. Agri. Hort. Genet. 10, p. 1–18.

    Google Scholar 

  • Lamprecht, H., 1952. Polymere Gene und Chromosomenstruktur bei Pisum. Agri Hort. Genetica 10, p. 158–168.

    Google Scholar 

  • Lamprecht, H., 1955. Die Vererbung der Chlorophyllmutante albina-terminalis von Pisum sowie Allgemeines zum Verhalten von Chlorophyll- und anderen Genen. Agri Hort. Genetica 13, p. 103–113.

    Google Scholar 

  • Lamprecht, H., 1956. Röntgen-empfindlichkeit und genotypische Konstitution bei Pisum. Agri Hort. Genetica 14, p. 161–176.

    Google Scholar 

  • Lamprecht, H., 1957. Durch Röntgenbestrahlung von Pisum-Samen erhaltene neue und bekannte Genmutationen. Agri Hort. Genetica 15, p. 142–154.

    Google Scholar 

  • Lamprecht, H., 1957. Röntgeninduzierte spezifische Mutationen bei Pisum in ihrer Abhängigkeit von der genotypischen Konstitution. Agri Hort. Genetica 15, p. 169–193.

    Google Scholar 

  • Lamprecht, H., 1958. Eine Pisum-Mutante mit in diminutive Stammverzweigungen umgewandelte Infloreszenzen und ihre Vererbung. Agri Hort. Genetica 16, p. 112–129.

    Google Scholar 

  • Lamprecht, H., 1958. Röntgenempfindlichkeit und genotypische Konstitution von Phaseolus. Agri Hort. Genetica 16, p. 196–208.

    Google Scholar 

  • Lamprecht, H., 1958. Über grundlegende Gene für die Gestaltung höheren Pflanzen sowie über neue und bekannte Röntgen-Mutanten. Agri Hort. Genetica 16, p. 145–195.

    Google Scholar 

  • Lamprecht, H., 1958. Eine fruticosa-Röntgenmutante von Pisum. Agri Hort. Genetica 16, p. 130–144.

    Google Scholar 

  • Lane, G. Roy, 1954. Chromosome breakage by diepoxyde and by X-rays. Symposium de Radiobiologie, Liège 1954, p. 265–274.

  • Langridge, J., 1958. A hypothesis of developmental selection exemplified by lethal and semi-lethal mutants of Arabidopsis. Austral. Journ. Biol. Sci. 2, p. 58–68.

    Google Scholar 

  • Larter, E. N. and Elliott, F. C., 1956. An evaluation of different ionizing radiations for possible use in the genetic transfer of bunt resistance from Agropyron to wheat. Canad. Journ. Bot. 34, p. 817–823.

    Google Scholar 

  • Laurila, K., 1957. Über vegetative Mutation in der Generation F1, bei Kreuzungen zwischen den Arten Solanum tuberosum L. und S. demissum Lindl. Maataloustieteellinen Aikakauskirja 29, 1: 66–67.

    Google Scholar 

  • Lawrence, T., 1955. The production of mutations by the irradiation of Montcalm barley. Can. Journ. Bot. 33, p. 515–530.

    Google Scholar 

  • Lerner, I. M., Dempster, E. R., and Inouye, N., 1958. Preliminary report on X-ray induction of variability in polygenic traits of chickens. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 164.

  • Lesley, J. W. and Lesley, M. M., 1956. Effect of seed treatment with X-rays and phosphorus 32 on tomato plants of first, second and third generations. Genetics 41, p. 575–588.

    Google Scholar 

  • Levan, A., 1944. Experimentally induced chlorophyll mutants in flax. Hereditas 30, p. 225–230.

    Google Scholar 

  • Levan, A., 1949. The influence on chromosomes and mitosis of chemicals, as studied by the Allium test. Proc. 8th Intern. Congr. Genet. Stockholm, (Hereditas Suppl.), p. 325-337.

  • Levan, A., 1951. Chemically induced chromosome reactions in Allium cepa and Vicia faba. Cold Spring Harbor Symp. Quant. Biol. 16, p. 233–243.

    Google Scholar 

  • Levan, A. and Tjio, J. H., 1948. Induction of chromosome fragmentation by phenols. Hereditas 34, p. 453–484.

    Google Scholar 

  • Lewis, E. B., 1950. The phenomenon of position effect. Adv. in Genetics 2, p. 73–115.

    Google Scholar 

  • Lewis, E. B., 1953. Pseudoallelism and the gene concept. Proc. 9th Intern. Congr. Genet., Bellagio, Carvologia Suppl. 6, p. 100–105.

    Google Scholar 

  • Lewis, E. B., 1955. Some aspects of position pseudoallelism. Amer. Nat. 89, p. 73–89.

    Google Scholar 

  • Linnert, G., 1950. Die Einwirkung von Chemikalien auf die Meiosis. Z.I.A.V. 83, p. 422–428.

    Google Scholar 

  • Linnert, G., 1953. Der Einflusz von Chemikalien auf Chiasmenbildung und Mutationsauslösung bei Oenothera. Chromosoma 5, p. 428–453.

    Google Scholar 

  • Livermore, J. R., 1933. Bud selection. Am. Potato Journ. 10, p. 17.

  • Loveless, A., 1952. Chemical and biochemical problems arising from the study of chromosome breakage by alkylating agents and heterocyclic compounds. Heredity Suppl. 6, p. 293–298.

    Google Scholar 

  • Lüers, H., 1956. Chinon I und Sanamycin im Mutationsversuch. Naturwiss. 43, p. 206.

  • Mac Key, J., 1949. Induced mutations in cereals. Proc. 8e Intern. Congr. of Gen. July 1948, p. 44. Lund 1949.

  • Mac Key, J., 1951. Neutron and X-ray experiments in barley. Hereditas 37, p. 421–464.

    Google Scholar 

  • Mac Key, J., 1952. The biological action of X-rays and fast neutrons on barley and wheat. Bot. Arkiv 1, p. 545–556.

    Google Scholar 

  • Mac Key, J., 1954. Mutation breeding in polyploid cereals. Acta Agric. Scand. 4, p. 549–557.

    Google Scholar 

  • Mac Key, J., 1954. Mutability at diploid and polyploid level. Proc. 9th Intern. Congr. of Genet. Bellagio, Caryologia 6, Suppl., p. 697–698.

    Google Scholar 

  • Mac Key, J., 1954. Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40, p. 65–180.

    Google Scholar 

  • Mac Key, J., 1954. The biological action of mustards on dormant seeds of barley and wheat. Acta Agric. Scand. 4, p. 419–429.

    Google Scholar 

  • Mac Key, J., 1958. Mutagenic response in Triticum at different levels of ploidy. First Intern. Wheat Gen. Symp. Winnipeg, 1958.

  • Mac Key, J., 1959. Radiogenetics in Triticum (in pr.). Genetica Agraria 12.

  • Maly, R., 1958. Die Genetik einiger strahleninduzierter, abweichender Plastidenformen bei Farnen. Zeitschr. Vererbungsl. 89, p. 469–470.

    Google Scholar 

  • Markarian, D., 1958. Cytogenetic evaluation of the Triticum x Agropyron hybrid forage selections at Pullman, Washington. Northwest Sci. 32, p. 79–88.

    Google Scholar 

  • Marquardt, H., 1949. Mutationsauslösung durch Abbauprodukte körpereigener Stoffe. Artzl. Forschung 3, p. 465–474.

    Google Scholar 

  • Marquardt, H., 1953. Abbauprodukte körpereigener Stoffe als mutagene Agentien. Proc. 7th Int. Congr. Bot., Stockholm, 1950, p. 219–220.

  • Matsumura, S., 1953. Irradiation experiments with X-rays in Einkorn wheat. Ann. Rep. Nat. Inst. Gen. Japan 1952 (1953), p. 36–37.

  • Matsumura, S., 1958. Effects of temperature and irradiation time upon mutations induced by radiations. Wheat Inform. Serv. 7, p. 5–6.

    Google Scholar 

  • Matsumura, S. and Fujii, T., 1954. Mutation in tobacco plants induced by X-rays. Ann. Rep. Nat. Inst. Genet. Japan, 1954, p. 66.

  • Matsumura, S., and Fujii, T., 1955. Gene mutation in Einkorn wheat induced by X-rays. Wheat Inform. Serv. 2, p. 13–14.

    Google Scholar 

  • Matsumura, S. and Fujii, T., 1955. Mutations in Nicotiana induced by X-rays. Japan. Journ. Breeding 5, p. 41–46.

    Google Scholar 

  • Matsumura, S. and Fujii, T., 1955. Mutation in tobacco plants induced by X-rays. Ann. Rep. Nat. Inst. Genetics (Japan) 5, 1 pp.

    Google Scholar 

  • Matsumura, S. and Fujii, T., 1956. Effect of X-rays on fertility and mutation rate in Einkorn wheat. Wheat Inform. Serv. 4, p. 4.

    Google Scholar 

  • Matsumura, S. and Fujii, T., 1956. Effect of X-rays on fertility and mutation rate in cereals. Ann. Rep. of the Nat. Inst. of Genetics Japan 6, p. 53–55.

    Google Scholar 

  • Matsumura, S. and Fujii, T., 1957. Mutants in tobacco plants induced by X-rays and their application. Ann. Rep. Nat. Inst. Genetics (Japan) 7, p. 87–88.

    Google Scholar 

  • McClintock, B., 1955. Intranuclear systems controlling gene action and mutation. Brookhaven Symp. Biol. 8, p. 58–71.

    Google Scholar 

  • McLeish, J., 1952. The action of maleic hydrazide in Vicia. Heredity Suppl. 6, p. 125–147.

    Google Scholar 

  • McLeisch, J., 1954. The consequences of localised chromosome breakage. Heredity 8, p. 385–407.

    Google Scholar 

  • McLennan, H. A., 1956. Summary Report on developments in alfalfa improvement research in Canada. Report 15th Alfalfa Impr. Conference, St. Paul (mimeogr.), p. 12–14.

  • Menzel, M. Y. and Brown, M. S., 1952. Viable deficiency-duplications from a translocation in Gossypium hirsutum. Genetics 37, p. 678–692.

    Google Scholar 

  • Menzel, M. Y. and Brown, M. S., 1954. The tolerance of Gossypium hirsutum for deficiencies and duplications. Amer. Naturalist 88, p. 407–418.

    Google Scholar 

  • Mertens, T. R. e.a. 1956. Phenotypic stability in rate of maturation of heterozygotes for induced chlorophyll mutations in tomato. Genetics 41, p. 791–803.

    Google Scholar 

  • Mertens, T. R. and Burdick, A. B., 1956. The use of X-irradiation to produce mutations in a polygenic system. Genetics 41, p. 653.

    Google Scholar 

  • Mertens, T. R. and Burdick, A. B., 1957. On the X-ray production of “desirable” mutations in quantitative traits. Am. Journ. Bot. 44, p. 391–394.

    Google Scholar 

  • Mertens, T. R., Burdick, A. B. and Gomes, F. R., 1956. Phenotypic stability in rate of maturation of heterozygotes for induced chlorophyll mutations in tomato. Genetics 41, p. 791–803.

    Google Scholar 

  • Messeri, E., 1957. Osservazioni sulla germinazione, lo sviluppo e la discendenza di Vicia sativa L. nata da semi trattati con raggi X. (with Engl. summary). Caryologia 10, p. 209–243.

    Google Scholar 

  • Metz, C. W., 1947. Duplication of chromosome parts as a factor in evolution. Amer. Nat. 81, p. 81–103.

    Google Scholar 

  • Michaelis, P., 1958. Untersuchungen zur Mutation plasmatischer Erbträger, besonders der Plastiden. I. and II. Planta 51, 1. p. 600–634, II. p. 722–756.

    Google Scholar 

  • Micke, A., 1955. Die Auswirkung einer Röntgenbestrahlung lufttrockener Samen von Melilotus albus Derr. auf die Bestrahlungsgeneration und deren Nachkommenschaften. Diss., Giessen, 1955.

  • Micke, A., 1958. Mutationszüchtung beim weissen Steinklee (Melilotus albus) mit Hilfe von Röntgenstrahlen. Z. Pflanzenz. 39, p. 419–437.

    Google Scholar 

  • Mikaelsen, K., 1954. Chemicals as protective agents against chromosome aberrations induced by ionizing radiations. Proc. 9th Int. Congr. Genet. Bellagio 1953, II, Caryologia 6, p. 1100–1104.

    Google Scholar 

  • Mikaelsen, K., 1954. Protective properties of cysteine, sodium hyposulfite, sodium cyanide against radiation induced chromosome aberrations. Proc. Nat. Ac. Sc. 40, p. 171–178.

    Google Scholar 

  • Mikaelsen, K., 1955. Cytological effect of chronic gamma irradiation and the protective property of certain chemicals against the radiation induced chromosome aberrations.Symp. de Radiobiologie, 073 Liège 1954 (Butterworth), London, 1955.

    Google Scholar 

  • Mikaelsen, K., 1956. Studies on genetic effects of chronic gamma radiation in plants. Proc. First Int. Conf. Peaceful Uses Atomic Energy, Vol. 12, p. 34–39.

    Google Scholar 

  • Mikaelsen, K., 1958. Comparisons between cytological, physiological and genetic effects of X-and neutron-irradiation in barley. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 188–189.

    Google Scholar 

  • Mikaelsen, K., 1958. The effect of polyploidy on the radiosensitivity of rye exposed to neutron radiation. Radiation Res. 9, p. 154.

    Google Scholar 

  • Mikaelsen, K. and Aastveit, K., 1957. Effect of neutrons and chronic gamma radiation on growth and fertility in oats and barley. Hereditas 43, p. 371–380.

    Google Scholar 

  • Miller, J. C., 1954. Selection of desirable somatic mutations; a means of potato improvement. Am. Potato Journ. 31, p. 358–359.

    Google Scholar 

  • Moës, A., 1957. L'action de la cystéamine chez l'orge. Bull. Inst. Agron. et Stat. Rech. de Gembloux 25, p. 98–107.

    Google Scholar 

  • Moës, A., 1957. Mutants progressifs chezl'orge. Bull. Inst. Agr. et Stat. Rech. de Gembl. 25, p. 108–115.

    Google Scholar 

  • Moës, A., 1959 Les mutations induites par les rayons X chez l'orge distique. Bull. Inst. Agr. et Stat. Rech. de Gembloux 27, p. 1–82.

    Google Scholar 

  • Moh, C. C. e.a. 1955. An unusual association of two mutant characters in atom-bombed barley. Journ. Heredity 46, p. 35–40.

    Google Scholar 

  • Moh, C. C. and Nilan, R. A., 1956. Reduced gene transmission in radiation-induced mutant barley. J. Heredity 57, p. 129–131.

    Google Scholar 

  • Hoh, C. C. and Smith, L., 1951. An analysis of seedling mutants (spontaneous, atomic bombradiation-, and X-ray-induced) in barley and durum wheat. Genetics 36, p. 629–640.

    Google Scholar 

  • Mol van Oud Loosdrecht, W. E. de, 1953. Dreizigiährige Erfahrungen in Bezug auf Mutation und Modifikation durch Röntgenbestrahlung. Angew. Botanik 26, p. 24–27.

    Google Scholar 

  • Mol van Oud Loosdrecht, W. E. de, 1954. Somatic mutation in tulips by treatment with neutrons. Proc. 7th Int. Bot. Congr., Stockholm 1950, p.221–222.

  • Mol van Oud Loosdrecht, W. E. de, 1954. Mindestens zwei Jahre anhaltende Modifikationen bei Tulpen, verursacht durch Röntegenbestrahlung. Vierteljschr. d. Naturf. Ges. Zürich 99, p. 198–213.

    Google Scholar 

  • Mol van Oud Loosdrecht, W. E. de, 1955. Wie Röntgenbestrahlungsexperimente dazu beigetragen haben das Problem der sogenannten “Tulpendiebe” zu lösen. Angewandte Botanik 29, p. 38–39.

    Google Scholar 

  • Montezuma de Carvalho, J., 1955. Induction of chromosome breakage with bacterial products. The origin of mutations. Bol. Soc. Brot. 29, p. 145–183.

    Google Scholar 

  • Montezuma de Carvalho, J., 1956. X-ray experiments on mitosis. I. Analysis of chromosome changes in colchitetraploid X2 cells. Bol. da Soc. Brot. 30, p. 221–240.

    Google Scholar 

  • Morrison, J. W., 1952. Effects of X-rays in Triticum. Heredity Suppl. 6, p. 83–90.

    Google Scholar 

  • Moutschen, J., 1958. Action combinée du myleran et des rayons X sur les graines de Vicia faba L. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 198–199.

    Google Scholar 

  • Moutschen-Dahmen, J. et Madeleine, 1958. Sur l'éyolution des lésions causées par la 8-ethoxy-caféine chez Hordeum sativum et chez Vicia faba. Hereditas 44, p. 18–36.

    Google Scholar 

  • Moutschen-Dahmen, J. et Moutschen-Dahmen, M., 1958.L'action du myleran (di-méthane-sulfonyloxy-butane) sur les chromosomes chez Hordeum sativum et chez Vicia faba. Hereditas 44, p. 415–446.

    Google Scholar 

  • Moutschen-Dahmen, M., Moutschen, J. and Ehrenberg, L., 1959. Chromosome disturbances and mutation produced in plant seeds by oxygen at high pressures. Hereditas 45, p. 230–244.

    Google Scholar 

  • Muller, H. J., 1927. Artificial transmutation of the gene. Science 66, p. 84–87.

    Google Scholar 

  • Muller, H. J., 1928. The problem of genic modification. Verh. 5ten Intern. Kongr. Vererb.wiss., Berlin 1927, Z.I.A.V. (Suppl.) 1, p. 234–260.

    Google Scholar 

  • Muller, H. J., 1954. Multipurpose stocks for studies of mutagenesis. Dros. Inf. Serv. 28, p. 144.

    Google Scholar 

  • Muller, H. J. and Oster, I. I., 1956. Principles of back mutation as observed in Drosophila and other organisms. Proc. 5th Int. Conf. Radiobiol., Stockholm 1956, p.407–415.

  • Mundry, K. W. und Gierer, A., 1958. Die Erzeugung von Mutationen des Tabaksmosaik virus durch chemische Behandlung seiner Nucleinsäure in vitro. Zeitschr. f. Vererbungsl. 89, p. 614–630.

    Google Scholar 

  • Murati, K. and Moriwaki, D., 1956. Genetic effects induced in plants (rice). Proc. First Intern. Conf. Peaceful Uses At. Energy, 1956, p. 46–47.

  • Myers, W. M., Ausemus, E. R., Koo, F. K. S. and hsu, K. J., 1956. Resistance to rust induced by ionizing radiations in wheat and oats. Proc. First Int. Conf. Peaceful Uses Atomic Energy. Vol. 12, p. 60–62.

    Google Scholar 

  • Nakao, Y., 1958. Further study on specificity of interactions between the individual gene locus and the structure of chemical mutagens (silkworm). Proc. 10th Int. Congr. Genetics, Montreal, II, p. 202–203.

    Google Scholar 

  • Nakao, Y., Tazima, Y., and Sakurai, Y., 1958. Specificity of interactions between the individual gene locus and the structure of chemical mutagens. Zeitschr. Vererbungsl. 89, p. 216–220.

    Google Scholar 

  • Nasrat, G. E., Kaplan, W. D. and Auerbach, C., 1954. A quantitative study of mustard gas induced chromosome breaks and rearrangements in Drosophila melanogaster. Zeitschr. Vererbungsl. 86, p. 249.

    Google Scholar 

  • Natarajan, A. T., Sitra, S. M. and Swaminathan, M. S., 1958. Polyploidy, radiosensitivity and mutation frequency in wheat. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva 1958. (P/1706).

  • Naylor, J. M. et al., 1951. Uptake of D 32 by some cereals. Can. Journ. Bot. 29, 329–338.

    Google Scholar 

  • Neel, J. V. and Schull, W. J., 1957. Studies on the potential genetic effects of the atomic bombs. Proc. Intern. Genetics Symposia 1956, Tokyo and Kyoto, p. 57–69.

  • Nilan, R. A., 1954. Relation of carbon dioxide, oxygen and low temperature to the injury and cytogenetic effects of X-rays in barley. Genetics 39, p. 943–953.

    Google Scholar 

  • Nilan, R. A., 1955. Post-irradiation storage effects on chromosomes in barley seeds X-rayed at normally ineffective dosages. Genetics 40, p. 588 (abstr).

    Google Scholar 

  • Nilan, R. A., 1958. After effects of ionizing radiation in barley. III. Storage of thermal neutron treated seeds. Northwest Sci. 32, p. 89–95.

    Google Scholar 

  • Nilan, R. A. and Moh, C. C., 1955. A mutant line of barley induced by atomic-bomb radiation. The effect of partial ovule sterility on the inheritance of cream seedlings. Journ. Heredity 46, p. 49–52.

    Google Scholar 

  • Nilsson-Ehle, H., 1948. The future possibilities of Swedish barley breeding. “Svalöf 1886–1946”, Lund. p. 113–126.

  • Nishimura, Y. and Kurakami, H., 1953. Analysis and synthesis of reciprocal translocations in barley. I. Jap. Journ. Breeding 3, p. 45–47.

    Google Scholar 

  • Nishiyama, I., 1957. X-ray induced mutation in Avena. (Japanese). Jap. Journ. Genet. 32, p. 254.

  • Nötzel, H., 1952. Genetische Untersuchungen an röntgeninduzierten Gerstenmutanten. Kühn-Archiv. 66, p. 73–132.

    Google Scholar 

  • Nover, I. and Bandlow, G., 1958. Mutationsversuche an Kulturpflanzen. VIII. Mehltauresistenz und ihre Genetik bei Wintergersten-Mutanten. Der Züchter 28, p. 184–189.

    Google Scholar 

  • Nuffer, M. G., 1957. Additional evidence on the effect of X-ray and ultraviolet radiation on mutation in maize. Genetics 42, p. 273–282.

    Google Scholar 

  • Nybom, N., 1950. Studies on mutations in barley. I. Superdominant factors for internode length. Hereditas 36, p. 321–328.

    Google Scholar 

  • Nybom, N., 1954. Mutation types in barley. Acta Agric. Scand. 4, p. 430–456.

    Google Scholar 

  • Nybom, N., 1954. Karyotype and viability in barley. Acta Agric. Scand. 4, p. 507–514.

    Google Scholar 

  • Nybom, N., 1955. The pigment characteristics of chlorophyll mutations in barley. Hereditas 41, p. 483–498.

    Google Scholar 

  • Nybom, N., 1956. Some further experiments on chronic gamma-irradiation of plants. Botaniska Notiser 109, p. 1–11.

    Google Scholar 

  • Nybom, N., 1956. On the differential action of mutagenic agents. Hereditas 42, p. 211–217.

    Google Scholar 

  • Nybom, N., Gustafsson, \OA., Granhall, I. and Ehrenberg, L., 1956. The genetic effects of chronic gamma irradiation in barley.Hereditas 42, p. 74–84.

    Google Scholar 

  • Ockey, C. H., 1957. A quantitative comparison between the cytotoxic effects produced by proflavine, acetylethyleneimine and triethylene melamine on root-tips of Vicia faba. Journ. Genet. 55, p. 525–550.

    Google Scholar 

  • Oehlkers, F., 1943. Die Auslösung von Chromosomenmutationen in der Meiosis durch Einwirkung von Chemikalien. Z.I.A.V. 81, p. 313–341.

    Google Scholar 

  • Oehlkers, F., 1946. Weitere Untersuchungen zur Mutationsauslösung durch Chemikalien. Biol. Zentralbl. 65, p. 176–186.

    Google Scholar 

  • Oehlkers, F., 1952. Chromosome breaks influenced by chemicals. Heredity Suppl. 6, p. 95–105.

    Google Scholar 

  • Oehlkers, F., 1956. Die Auslösung von Mutationen durch Chemikaliën bei Antirrhinum majus. Z.I.A.V. 87, p. 584–589.

    Google Scholar 

  • Oehlkers, F. und Linnert, G., 1950. Weitere Untersuchungen über die Wirkungsweise von Chemikalien bei der Auslösung von Chromosomenmutationen. Z.I.A.V. 83, p. 429–438.

    Google Scholar 

  • Oehlkers, F. und Marquardt, H., 1950. Die Auslösung von Chromosomenveränderungen durch Injektion wirksamer Substanzen in die Knospen von Paeonia tenuifolia. Z.I.A.V. 83, p. 299–317.

    Google Scholar 

  • Oka, H. I., Hayashi, J. and Shiojiri, I., 1958. Induced mutations of polygenes for quantitativa characters in rice. Journ. Hered. 49, p. 11–14.

    Google Scholar 

  • Oltmann, W., 1950. Züchterische Auswirkung röntgeninduzierter Mutationen an physiologischen Merkmalen bei Winterweizen. Zeitschr. Pflanzenz. 29, p. 76–89.

    Google Scholar 

  • Osborne, T. S., 1957. Past, present and potential uses of radiation in southern plant breeding. Ninth Oak Ridge Regional Symp., p. 5–10.

  • Osborne, T. S., 1957. Mutation production by ionizing radiation. proc. Soil and Crop Sci. Soc. Florida, p. 91–107.

  • Osborne, T. S. and Elliott, F. C., 1955. Chromosome translocations induced in Triticum Agropyron hybrids by X-rays, P32 and S35, Am. J. Botany 42, p. 646–649.

    Google Scholar 

  • Oster, I. I., 1958. Interaction between ionizing radiation and chemical mutagens. Zeitschr. f. Vererbungsl. 89, p. 1–6.

    Google Scholar 

  • Östergren, G., 1948. Chromosome bridges and breaks by coumarin. Botaniska Notiser 1948, p. 376–380.

  • Östergren, G., 1957. Production of polyploids and aneuploids of Phalaris by means of nitrous oxide. Hereditas 43, p. 512–516.

    Google Scholar 

  • Östergren, G., Morris, R. and Wakonig, T., 1958. A study in Hyacinthus on chromosome size and breakability by X-rays. Hereditas 44, p. 1–17.

    Google Scholar 

  • Ouang, T. Y. and Chang, W. T., 1958. Chromosomal aberrations and gene mutations in rice, induced by X-radiation. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva 1958. (P/130).

  • Owen, C. R., 1957. Effects of radiation of Dallisgrass seed with thermal neutrons on subsequent generations. Agron. Abs. 49, p. 58.

    Google Scholar 

  • Pal, B. P., Swaminathan, M. S. and Natarajan, A. T., 1957. Awning induced in wheat by treatment with radioactive phosphorus. Wheat Inform. Serv. 5, p. 4–5.

    Google Scholar 

  • Pal, B. P., et al. 1958. Frequency and types of mutations induced in bread wheat by some physical and chemical mutagens. Wheat Inform. Serv. 7, p. 14–15.

    Google Scholar 

  • Pandey, K. K., 1956. Mutations of self-incompatibility alleles in Trifolium pratense and T. repens. Genetics 41, p. 327–343.

    Google Scholar 

  • Pirovano, A., 1956. Radiozioni ed isotopi in genetica e in biologia. Sementi eletti 2, p. 8–14.

    Google Scholar 

  • Plaut, W. S., 1954. Some observations in P32 concentration and distribution in Lilium buds. Hereditas 40, p. 242–248.

    Google Scholar 

  • Pollhamer, E., 1956. X-ray mutation experiments in breeding spring barley. Crop. Production 5, p. 307–320.

    Google Scholar 

  • Prakken, R., 1950. Kunstmatige mutaties bij granen. Intern. Tijdschr. brouwerij en mouterij 10, p. 25–37.

    Google Scholar 

  • Prakken, R., 1958. Het tiende Internationaal Genetisch Congres. Meded. Dir. Tuinbouw 21, p. 813–821.

    Google Scholar 

  • Preston,W. H. and Link C. B., 1958. Dwarfed progeny produced by plants treated with several quaternary ammonium compounds. Plant Physiol. 33, Suppl., p. 49.

    Google Scholar 

  • Prokofeva-Belgovskaya, A. A. and Alikhanyan, S. I., 1958. Radiation-induced mutations of producers of streptomycin, aureomycin and terramycin. Proc. Sec. Intern. Conf. Peaceful Uses Atomic Energy, Geneva, 1958. (P/2436).

  • Rai, U. K. and Jacob, K. T., 1956. Induced mutation studies in Sesamum and mustard. Sci. and Cult. 22, p. 344–346.

    Google Scholar 

  • Rajan, S. S., 1957. Radiation-induced mutation of the self-incompatibility gene in Brassica. Jap. Journ. Genet. 32, p. 258.

    Google Scholar 

  • Raper, K. R., 1947. Penicillin. U.S. Dept. Agric., Yearbook 1943–'47, p. 699–710.

  • Rapoport, J. A., 1943. Oxydation and the mechanism of action of mutagenic factors. Zhur. Obsh. Biol. 4, p. 65–72.

    Google Scholar 

  • Rapoport, J. A., 1946. Carbonyl compounds and the chemical mechanism of mutation. (Russian with English summary). C. R. (Doklady) Ac. Sc. U.R.S.S. 54, p. 65–67.

    Google Scholar 

  • Rapoport, J. A., 1948. Effects of ethyleneoxyde, glycidol and glycols in gene mutations. Compt. Rend. Acad. Sc. U.R.S.S. 60, p. 469–472.

    Google Scholar 

  • Rapoport, J. A., 1948. Mutations under the influence of unsaturated aldehydes. Compt. Rend. Acad. Sc. U.R.S.S. 61, p. 713–715.

    Google Scholar 

  • Rapoport, J. A., 1948. Chemical reaction with the amino group of the proteins in the gene (Russian). Zh. Gener. Biol. 8, p. 359–375.

    Google Scholar 

  • Rawlings, J. O. e.a., 1958. Variation in quantitative characters of soybeans after seed irradiation. Agron. Journ. 50, p. 524–528.

    Google Scholar 

  • Read, J. and Kihlman, B. A., 1956. Comparison of the effects of 8-ethoxycaffeine and X-rays on the cytology and growth of roots of Vicia faba. Hereditas 42, p. 487–507.

    Google Scholar 

  • Rees, H., 1952. Centromere control of chromosome splitting and breakage. Heredity Suppl. 6, p. 235–245.

    Google Scholar 

  • Reeve, E. C. R., 1958. The induction, by X-rays, of mutations affecting quantitative characters in Drosophila melanogaster. Proc. 10th Int. Congr. Genetics, Montreal, II. ,p. 231.

  • Reichardt, A., 1955. Experimentelle Untersuchungen über den Effekt von Röntgenstrahlen in der vegetativen Vermehrung einer alten Rebensorte. Gartenbauwiss. 2, p. 355–413.

    Google Scholar 

  • Revell, S. H., 1953. Chromosome breakage by X-rays and radiomimetic substances in Vicia. Heredity 6, Suppl. p. 107.

    Google Scholar 

  • Rhoades, M. M., 1952. Origin of male sterility in corn. 6th Hybr. Corn. Ind. Res. Conf. Rep. Am. Seed Trade Ass., p. 7–12.

  • Richter, A. and Singleton, W. R., 1955. The effect of chronic gamma radiation on the production of somatic mutations in carnations. Proc. Nat. Ac. Sc. 41, p. 295–300.

    Google Scholar 

  • Rick, C. M. and Butler, L., 1956. Cytogenetics of the tomato. Adv. in Genetics 8, p. 267–382.

    Google Scholar 

  • Rieger, R. and Michaelis, A., 1958. The induction of automutagenic substances by submersion of Vicia faba seeds in tap water. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 233.

  • Riley, H. P., 1957. Chemical protection against X-ray damage to chromosomes. Genetics 42, p. 593–600.

    Google Scholar 

  • Röbbelen, G., 1957. Untersuchungen an strahleninduzierten Blattfarbmutanten von Arabidopsis thaliana (L.) Heynh. Z.I.A.V. 88, p. 189–252.

    Google Scholar 

  • Rosen, G. von, 1953. Radiomimetic activity and the periodical system of the elements (Pisum, Allium, Beta and Vicia). Botaniska Notiser, p. 140–142.

  • Rosen, G. von, 1954. Breaking of chromosomes by the action of elements of the periodical system and by some other principles. (Pisum, Allium, Beta and Vicia). Hereditas 40, p. 258–263.

    Google Scholar 

  • Rosen, G. von, 1957. Mutations induced by the action of metal ions in Pisum. Hereditas 43, p. 644–664.

    Google Scholar 

  • Ross, J. G., Franzke, C. J., Sanders, Mary E., 1958. The immediate induction of homozygous diploid mutants in Sorghum. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 241.

  • Ruggeri, C., 1959. Gli effetti citologici dell' acetato di Cobalto e dell'acetato di Nichelio. Caryologia 12, p. 348–357.

    Google Scholar 

  • Sagawa, Y. and Mehlquist, G. A. L., 1957. The mechanism responsible for some X-ray induced changes in flower color of the carnation, Dianthus caryophyllus., Am. Journ. Bot. 44, p. 397–403.

    Google Scholar 

  • Sagromsky, H., 1956. Zur Pigmentbildung bei einigen Gerstenmutanten. Die Kulturpflanze 4, p. 187–194.

    Google Scholar 

  • Samad, A. A., 1957. Studies on a few mutations in rice varieties induced by chemicals. Madras Agr. Journ. 44, p. 664.

    Google Scholar 

  • Sampson, D. R. e.a., 1958. Investigations on the sporting process in greenhouse chrysanthemums. Can. Journ. Plant Science 38, p. 346–356.

    Google Scholar 

  • Sanders, M. E., Franzke, C. J. and Ross, J. G., 1959. Factors influencing the induction of colchicine-induced homozygous mutants in Sorghum. Am. J. Botany 1959, (in pr.).

  • Santiago, J. C., 1957. Attempting to induce mutations artificially on the wheat stem rust fungus. Robigo, Castelar, 1957. no. 3, p. 15–16. (mimeogr.).

  • Sauerland, H., 1956. Quantitative Untersuchungen von Röntgeneffekten nach Bestrahlung verschiedener Meiosisstadien bei Lilium candidum. Chromosoma 7, p. 627–654.

    Google Scholar 

  • Savić, M. R., 1958. Studying the effect of irradiation in dependence of the biological properties of irradiated seeds. Proc. 2nd Int. Conf. Peaceful Uses Atomic Energy, Geneva, 1958. (P/472).

  • Sax, K., 1955. The effect of ionizing radiation on plant growth. Am. J. Bot. 42, p. 360–364.

    Google Scholar 

  • Scarascia, G. T., 1957. Ricerchi sugli effetti ella radiazione in Nicotiana. II. (therm. neutr.) (with Engl. summary). Caryologia 10, p. 304–329.

    Google Scholar 

  • Scarascia, G. T., 1958. Osservazioni preliminari sugli effetti morfologici, genetici et citogenetici dell' irradiazione di semi di Nicotiana tabacum L. con neutroni termici. Tabacco 62, p. 3–16.

    Google Scholar 

  • Scarascia, G. T., 1959. Aspetti della radioresistenza in specie del genere Nicotiana (in pr.). Genetica Agraria 12.

  • Scheibe, A. und Bruns-Neitzert, A., 1956. Das genetische Verhalten einer kurzröhrigen Mutante von Trifolium pratense. Der Züchter 26, p. 153–155.

    Google Scholar 

  • Scheibe, A. und Hülsmann, G., 1957. Uber das Auftreten bitterstoffarmer Pflanzen von Melilotus albus in der C2-Generation nach Behandlung mit mutagenen Chemikalien. Naturwissenschaften 44, p. 17–18.

    Google Scholar 

  • Scheibe, A. und Hülsmann, G., 1958. Mutationsauslösung beim Steinklee (Melilotus albus). Zeitschr. f. Pflanzenz. 39, p. 299–324.

    Google Scholar 

  • Schmidt, J. W. and Frolik, E. F., 1951. The effects of thermal neutron irradiation of maize and barley kernels. Nebraska Univ. Agr. Expt. Stat. Res. Bull. 167, 29 pp.

  • Schmidt, M., 1954. Weitere Mitteilungen über einen früher beschriebenen Fall gehäufter Chimärenbildung beim Apfel. Der Züchter 24, p. 305–306.

    Google Scholar 

  • Scholes, Mary E., 1955. The effects of aldrin, isodrin, endrin and D.D.T. on mitosis in roots of the onion (Allium cepa L.). Journ. Horticult. Sc. 30, p. 181–187.

    Google Scholar 

  • Scholz, F., 1955. Mutationsversuche an Kulturpflanzen. IV. Uber den züchterischen Wert zweier röntgeninduzierter nachtkorniger Gerstenmutanten. Kulturpflanze 3, p. 69–89.

    Google Scholar 

  • Scholz, F., 1956. Mutationsversuche an Kulturpflanzen. V. Die Vererbung zweier sich variabel manifestierender Übergangsmerkmale von bespelzter zu nackter Gerste bei röntgeninduzierten Mutanten. Kulturpflanze 4, p. 228–246.

    Google Scholar 

  • Scholz, F., 1957. Mutationsversuche an Kulturpflanzen. VII. Untersuchungen über den züchterischen Wert röntgeninduzierter Mutanten verschiedener Merkmalsgruppen bei Sommer-und Wintergerste. Zeitschr. f. Pflanzenz. 38, p. 181–220, 225–274.

    Google Scholar 

  • Scholz, F., 1958. Mutationsversuche an Kulturpflanzen. IX. Über den Rohproteingehalt röntgeninduzierter Gerstenmutanten. Der Züchter 28, p. 289–296.

    Google Scholar 

  • Scholz, F., 1958. Smooth-awned barley mutants induced by X-rays. Proc. 10th Intern. Congr. Genetics, Montreal, II, p. 254.

  • Scholz, F. und Lehmann, Q., 1958. Die Gaterslebener Mutanten der Saatgerste in Beziehung zur Formenmannigfaltigkeit der Art Hordeum vulgare L.s.1.I. Kulturpflanze 6, p. 123–166.

    Google Scholar 

  • Schwemmle, J., 1952. Samenalter und Entwicklung. Zeitschr. Naturf. 7b, p. 255.

  • Schwinghamer, E. A. A., 1957. Radiation-induced mutations in race-1 of the flax rust fungus. Phytopath. 47, p. 31.

    Google Scholar 

  • Scossirolli, R., 1959. Influenza di trattamenti con raggi X, applicati al seme, su caratteri morfologici nel frumento (in pr.). Genetica Agraria 12.

  • Sears, E. R., 1955. An intergeneric gene transfer induced by X-rays. Agron. Abstr. Ann. Meetings, Davis, p. 55.

  • Sears, E. R., 1956. The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brook-haven Symp. Biol. 9, p. 1–22.

    Google Scholar 

  • Seehofer, F., 1957. Die chemische Selektion einer groszen Pflanzenzahl (105). Der Züchter 27, p. 244–245.

    Google Scholar 

  • Serres, F. J. de, 1958. Studies with purple adenine mutants in Neurospora crassa. III. Reversion of X-ray-induced mutants. Genetics 43, p. 187–206.

    Google Scholar 

  • Shapiro, S. and Sagawa, Y., 1957. The Brookhaven cooperative program for radiation mutation research. Proc. Ninth Oak Ridge Regional Symp., p. 11–35.

  • Sharma, A. K. and Bhattacharjya, N. K., 1956. An investigation on the possibilities of the use of phenols in chromosome analysis. Genetica 28, p. 121–142.

    Google Scholar 

  • Sharma, A. K. and Mukherji, R. K., 1956. Effect of irradiation on adult nuclei in plants. Genetica 28, p. 143–164.

    Google Scholar 

  • Sharma, A. K. and Roy, M., 1955. Orcein staining and the study of the effect of chemicals on chromosomes. Chromosoma 7, p. 275–280.

    Google Scholar 

  • Sharma, A. K. and Sen, S., 1954. Study of the effect of water on nuclear constituents. Genetica Iberica 6, p. 19–28.

    Google Scholar 

  • Shebeski, L. H., 1952. The production of beneficial mutations in barley by irradiation. Cereal News 1, p. 4–8.

    Google Scholar 

  • Shebeski, L. H. and Lawrence, T., 1954. The production of beneficial mutations in barley by irradiation. Can. Journ. Agric. Sc. 34, p. 1–9.

    Google Scholar 

  • Sheppard, C. W., c.s., 1957. Biological effects of fast neutrons from an internal target cyclotron: Physical methods and dominant lethals in Drosophila. Rad. Res., 1957.

  • Sikka, S. M., e.a., 1956. A note on some X-ray induced variations in Upland cotton. Ind. Journ. Genet. Pl. Breed. 16, p. 144–145.

    Google Scholar 

  • Singh, H. B. and Bhachandani, P. M., 1953. Genetics of leaf mutations in gram (Cicer arietinum L.). Ind. Journ. Genet. Pl. Breed. 13, p. 106–109.

    Google Scholar 

  • Singleton, W. R., 1954. The effect of chronic gamma radiation on endosperm mutations in maize. Genetics 39, p. 587–603.

    Google Scholar 

  • Singleton, W. R., 1955. The contribution of radiation genetics to Agriculture. Agron. Journ. 47, p. 113–117.

    Google Scholar 

  • Singleton, W. R., 1955. “Mutation breeding”. Report 10th Hybr. Corn Ind. Res. Conf. p. 32–40.

  • Singleton, W. R., 1957. Gamma radiation of growing plants for mutation induction. Proc. 9th. Oak Ridge Regional Symp., p. 49–57.

  • Singleton, W. R. and Caspar, A. L., 1954. Effect of time of gamma radiation on endosperm mutations in maize. Genetics 39, p. 587–603.

    Google Scholar 

  • Sire, M. W. and Nilan, R. A., 1959. The relation of oxygen post treatment and heterochromatin to X-ray-induced chromosome aberration frequencies in Crepis capillaris. Genetics 44, p. 124–136.

    Google Scholar 

  • Smith, L., 1950. Effects of atomic bomb radiations and X-rays on seeds of cereals. Journ. Heredity 41, p. 125–130.

    Google Scholar 

  • Smith, L., 1951. Cytology and genetics of barley. The Bot. Rev. 17, p. 1–51, 133–202, 285–355.

    Google Scholar 

  • Smith, L. and Caldecott, R. S., 1948. Modification of X-ray effects on barley seeds by pre-and posttreatment with heat. Journ. Heredity 39, p. 173–180.

    Google Scholar 

  • Smith, H. H. and Srb, A. M., 1951. Induction of mutations with beta-propiolactone. Science 114, p. 490–492.

    Google Scholar 

  • Sobels, F. H., 1956. Organic peroxides and mutagenic effects in Drosophila. Nature 177, p. 979–982.

    Google Scholar 

  • Sobels, F. H., 1956. Studies on the mutagenic action of formaldehyde in Drosophila. I, II. Z.I.A.V. 87, p. 735–742, 743–752.

    Google Scholar 

  • Sobels, F. H., 1956. The possible role of peroxides in radiation and chemical mutagenesis in Drosophila. Proc. 5th Int. Conf. Radiobiol. Stockholm 1956, p. 449–456.

  • Sobels, F. H., 1957. Presumptive indication of radiation-produced peroxide as shown by its genetic effects in Drosophila. Les peroxydes organiques en radio-biologie. Masson et Cie, Paris.

    Google Scholar 

  • Sobels, F. H., 1958. De nadelige werking van ioniserende straling op het genetisch systeem. Vakblad voor Biologen 38, p. 169–183.

    Google Scholar 

  • Sobels, F. H., 1958. Rates of forward and reverse mutations induced by mustard gas in Drosophila. Proc. 10th Int. Congr. Genetics, Montreal, Vol. II, p. 267–268.

    Google Scholar 

  • Sonnaville, P. de, 1950. Mutaties in het grote fruit. Med. v. h. Inst. Vered. Tuinbouwgew. 17, p. 77–82.

    Google Scholar 

  • Sparrman, B., Ehrenberg, L. and Ehrenberg, A., 1959. Scavenging of free radicals and radiation protection by nitric oxide in plant seeds. Acta Chem. Scand. 13, p.199–200.

    Google Scholar 

  • Sparrow, A. H., 1950. Tolerance of Tradescantia to continuous exposures to gamma radiation from Co 60. Genetics 36, p. 135.

    Google Scholar 

  • Sparrow, A. H., 1953. Somatic mutations induced in plants by treatment with X and gamma-radiation. Proc. 9th Int. Congr. Genet., Caryologia 6, Suppl., p. 1105–1106.

    Google Scholar 

  • Sparrow, A. H., 1955. A survey of the radiosensitivity of some higher plants. Radiation Research 3, p. 349 (abstr).

    Google Scholar 

  • Sparrow, A. H. and Christensen, E., 1953. Tolerance of certain higher plants to chronic exposure to gamma radiation from cobalt-60. Science 118, p. 697.

    Google Scholar 

  • Sparrow, A. H., Denegre, M. and Haney, W. J.. 1952. Somatic mutations in Antirrhinum produced by chronic gamma irradiation. Genetics 37, p. 627–628.

    Google Scholar 

  • Sparrow, A. H., Gunckel, J. E., Schairer, L. A. and Hagen, G., 1956. Tumor formation and other morphogenetic responses in an amphidiploid tobacco hybrid exposed to chronic gamma irradiation. Am. Journ. Bot. 43, p. 377–388.

    Google Scholar 

  • Sparrow, A. H. and Konzak, C. F., 1958. The use of ionizing radiations in plant breeding accomplishments and prospects. Camelia Culture, Macmillan Co, New York, p. 425–452.

    Google Scholar 

  • Sparrow, A. H. and Pond, V., 1956. Some cytogenetic and morphogenetic effects of ionizing radiation on plants. Conf. on Radioactive Isotopes in Agriculture U.S. Atomic Energy Commission, TID 7512, p. 125–139.

    Google Scholar 

  • Sparrow, A. H., and Pond, V., 1956. The relationship between dose rate and somatic mutation in Antirrhinum majus exposed to chronic gamma-irradiation. Radiation Res. 5, p. 596.

  • Sparrow, A. H. and Schairer, L. A., 1958. The radioresistance of high polyploids (Chrysanthemum, Sedum). Radiation Res. 9, p. 187.

  • Sparrow, A. H. and Singleton, W. R., 1953. The use of radiocobalt as a source of gamma rays and some effects of chronic irradiation on growing plants. Amer. Nat. 87, p. 29–48.

    Google Scholar 

  • Spencer, J. L. and Blakeslee, A. F., 1955. Induced pollen lethals from seeds of Datura stramonium exposed to different radiations. Proc. Nat. Ac. Sc. Wash. 41, p. 307–312.

    Google Scholar 

  • Stadler, L. J., 1928. Genetic effects of X-rays in maize. Proc. Nat. Acad. Sc. 14, p. 69–72.

    Google Scholar 

  • Stadler, L. J., 1928. The rate of induced mutations in relation to dormancy, temperature and dosage. Anat. Record 41, p. 97.

    Google Scholar 

  • Stadler, L. J., 1931. The experimental modification of heredity in crop plants 1. Induced chromosomal irregularities. 2. Induced mutations. Sci. Agr. 11, p. 557–572 and p. 645–661.

    Google Scholar 

  • Stadler, L. J., 1932. On the genetic nature of induced mutations in plants. Proc. 6th Int. Congr. Gen., 1, p. 274.

    Google Scholar 

  • Stadler, L. J., 1941. The comparison of ultraviolet and X-ray effects on mutation. Cold Spring Harbor Symp. Quant. Biol. 9, p. 168–178.

    Google Scholar 

  • Stadler, L. J., 1954. The gene. Science 120, p. 811–819.

    Google Scholar 

  • Stakman, E. C. and Rowell, J. B., 1950. Inorganic compounds inducing mutation in Ustilago zeae. Am. Journ. Bot. 37, p. 670–671.

    Google Scholar 

  • Stange, L., 1951. Untersuchungen über den Einflusz von Begleitfaktoren auf die mutationsauslösende Wirkung von Röntgenstrahlen. Z.I.A.V. 83, p. 429–438.

    Google Scholar 

  • Stange, L., 1956. Zur Frage nach den Einflusz der Temperatur bei der Auslösung von Chromosomen-mutationen in der Meiosis durch Röntgenstrahlen. Z.I.A.V. 87, p. 431–438.

    Google Scholar 

  • Stanton, W. R., 1953. Bolting, a vegetative variation on the potato. Heredity 6, p. 37–53.

    Google Scholar 

  • Steffensen, D., 1957. Effects of various cation imbalances on the frequency of X-ray induced chromosomal aberrations in Tradescantia. Genetics 42, p. 239–252.

    Google Scholar 

  • Stein, G. and Swallow, A. J., 1956. The biological action of ionizing radiations from the point of view of radiation chemistry. Proc. 5th Int. Conf. Radiobiol., Stockholm 1956, p. 16–21.

  • Steinitz-Sears, L. M. and Sears, E. R., 1957. Ultraviolet and X-ray induced chromosomal aberrations in wheat. Genetics 42, p. 623–630.

    Google Scholar 

  • Steinman, I. D., Iyer, V. N. and Szybalski, W., 1958. The mechanism of chemical mutagenesis. II. Interaction of selected compounds with manganous chloride. (Escherichia coli). Arch. Biochem. Biophys. 76, p. 78–86.

    Google Scholar 

  • Stern, K., 1956. Über die Erblichkeit des Wachstums (vorläufige Ergebnisse eines Versuches mit Mutanten von Antirrhinum majus L. Der Züchter 26, p. 121–127.

    Google Scholar 

  • Stern, C., 1957. A note on the detection of differential effects of mutagens. Journ. Genetics 55, p. 276–279.

    Google Scholar 

  • Stoy, V. and Hagberg, A., 1958. Effects of gibberellic acid on erectoides mutations in barley. Hereditas 44, p. 516–522.

    Google Scholar 

  • Stroman, G. N. and Lewis, T. H., 1951. A study of genetic effects of cosmic radiation on cotton seed. Journ. Heredity 42, p. 211–212.

    Google Scholar 

  • Stubbe, H., 1957/1958. Mutanten der Kulturtomate Lycopersicon esculentum. Miller I und II. Die Kulturpflanze 5, p. 190–220, and 6, p. 89–115.

    Google Scholar 

  • Stubbe, H. and Bandlow, G., 1947. Mutationsversuche and Kulturpflanzen. I. Röntgenbestrahlungen von Winter-und Sommergersten. Der Züchter 17/18, p. 366–374.

    Google Scholar 

  • Stubbe, H. und Döring, H., 1938. Untersuchungen über experimentelle Auslösung von Mutationen bei Antirrhinum majus. VII. Z.I.A.V. 75, p. 341–351.

    Google Scholar 

  • Swaminathan, M. S., 1957. Polyploidy and sensitivity to mutagens. The Indian Journ. of Gen. and Plant Breeding 17, p. 296–304.

    Google Scholar 

  • Swaminathan, M. S. and Natarajan, A. T., 1956. Chromosome breakage induced by vegetable oils and edible fats. Current Sci. 25, p. 382–384.

    Google Scholar 

  • Swaminathan, M. S. and Natarajan, A. T., 1958. Cytological and genetic changes induced by vegetable oils in Triticum aestivum. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 285–286.

    Google Scholar 

  • Swanson, C. P., 1954. Effect of oxygen tension on the production of chromosome breakage by ionizing radiations: An interpretation. Radiobiol. Symp., Liège.

  • Swanson, C. P., 1955. The oxygen effect and chromosome breakage. Journ. Cell. and Comp. Physiol., Suppl. 2, 45, p. 285–298.

    Google Scholar 

  • Swanson, C. P., 1955. Relative effects of qualitatively different ionizing radiations on the production of chromatid aberrations in air and in nitrogen. (Tradescantia). Genetics 40, p. 193–203.

    Google Scholar 

  • Swanson, C. P., Merz, I. and Cohn, N. S., 1958. Metabolism and the stability of the chromosome. Proc. 10th Int. Congr. Genetics, Montreal, Vol. I.

  • Tanaka, N., 1954. Action of chemicals on plant cells. IX. Effects of hydrogen peroxide and sodium azide on the mitotic cells. Jap. Journ. Gen. 29, p. 177–178.

    Google Scholar 

  • Tanaka, N., 1958. Cytological effect of radioactive rainfall. Proc. 10th Int. Congr. Gen. Vol. II.

  • Tanaka, N. and Sugimura, A., 1955. Action of chemicals on plant cells. X. Effect of azaserine on the mitotic cells. Jap. Journ. Gen. 30, p. 189.

    Google Scholar 

  • Tanaka, N. and Sugimura, A., 1957. Cytological study of the radiation damage. I. Jap. Journ. Gen. 32, p. 262.

  • Tedin, O., 1954. X-irradiation of Lupinus luteus. Acta Agri. Scand. 4, p. 569–573.

    Google Scholar 

  • Tedin, O., and Hagberg, A., 1952. Studies on X-ray induced mutations in Lupinus luteus. Hereditas 38: p. 267–296.

    Google Scholar 

  • Thoday, J. M., 1952. Sister-union isolocus breaks in irradiated Vicia faba: the target theory and physiological variation. Heredity Suppl. 6, p. 299–309.

    Google Scholar 

  • Thoday, J. M. and Read, J., 1947. Effect of oxygen on the frequency of chromosome aberrations produced by X-rays. Nature 160, p. 608.

    Google Scholar 

  • Thomas, P. T., 1957. Irradiation for plant improvement (grasses). Discovery 18, p. 18–20.

    Google Scholar 

  • Thompson, K. F., 1950. The mutagenic effect of radiophosphorus in barley. Hereditas 36, p. 220–224.

    Google Scholar 

  • Tiele-Winckler, E. B. von, 1956. Codein als hemmende Substanz bei der Auslösung von Chromosomenmutationen von Oenothera. Z. Vererbungsl. 87, p. 338–355.

    Google Scholar 

  • Timoféeff-Ressovsky, N. W., Zimmer, K. G., und Delbrück, M., 1935. Über die Natur der Genmutation und der Genstruktur. Nachr. Ges. Wiss. Göttingen Nc F. 1, p. 189–245.

    Google Scholar 

  • Tjio, J. H. and Hagberg, A., 1951. Cytological studies on some X-ray mutants of barley. Anales de la Est. Exp. de Aula Dei. 2, p. 149–167.

    Google Scholar 

  • Tollenaar, D., 1931. Kunstmatige mutaties bij tabak. Hand. 23ste Nederl. Nat.-en Geneesk. Congr. p. 161–163.

  • Tollenaar, D., 1934. Untersuchungen über Mutation bei Tabak. I. Entstehungsweise und Wesen künstlich erzeugter Gen-Mutanten. Genetica 16, p. 111–152.

    Google Scholar 

  • Tollenaar, D., 1938. Untersuchungen über Mutation bei Tabak. II. Einige künstlich erzeugte Chromosom-Mutante. Genetica 20, p. 285–294.

    Google Scholar 

  • Tozu, T., 1958. A gene mutation in wheat concerning the crossability with rye. Jap. Journ. Br. 7, p. 228–230.

    Google Scholar 

  • Troll, H. J., 1958. Leistungen von Wachstumsmutanten aus Müncheberger Material von Lupinus luteus. Der Züchter 28, p. 25–32.

    Google Scholar 

  • Uchikawa, I., 1957. The mutations on common wheat induced by X-ray. Jap. Journ. Genet. 32, p. 264.

    Google Scholar 

  • Verkerk, K., 1959. Neutronic mutations in tomatoes. Euphytica 8, p. 216–222.

    Google Scholar 

  • Vogt, M., 1948. Mutationsauslösung bei Drosophila durch Äthylurethan. Experientia 4, p. 68–69.

    Google Scholar 

  • Vogt, M., 1950. Ergänzende Befunde zur mutagenen Wirkung der Urethane (Carbaminsäureëster) bei Drosophila. Z.I.A.V. 83, p. 341–346.

    Google Scholar 

  • Wakonig, R. and Arnason, T. J., 1958. Effects of triazine on chromosomes. (Vicia). Proc. 10th Int. Congr. Genetics, Montreal, Vol. II, p.305.

  • Watts, V. M., 1958. Mutations in watermelon resulting from gamma ray irradiation. Proc. 55th Ann. Conv. Assoc. South. Agr. Workers, p. 165.

  • Wellensiek, S. J., 1959. Neutronic mutations in peas. Euphytica 8, p. 209–215.

    Google Scholar 

  • Wellensiek, S. J. en Verkerk, K., 1959. Neutronenmutaties bij erwten en tomaten. Genen en phaenen 4, p. 1–3.

    Google Scholar 

  • Went, F. W., 1957. Genotypic and phenotypic variability. Chronica Botanica 17, p. 195–201.

    Google Scholar 

  • Wettstein, D. von, 1952. Halmaufbau und Standfestigkeit bei erectoides Mutanten der Gerste. Hereditas 38, p. 345–368.

    Google Scholar 

  • Wettstein, D. von, 1954. The pleiotropic effects of erectoides factors and their bearing on the property of straw-stiffness. Acta Agric. Scand. 4, p. 491–506.

    Google Scholar 

  • Wettstein, D. von, 1958. Mutations and the intentional reconstruction of crop-plants. Hereditas 43, 1946, p. 298–302.

    Google Scholar 

  • Wettstein, D. von, 1958. Directed mutability and submicroscopic gene physiology in chlorophyll lethals. Proc. 10th Int. Congr. Genetics, Montreal, II, p.312

  • Wheeler, H. E. and Luke, H. H., 1955. Mass screening for disease-resistant mutants in oats. Science 122, p. 1229.

    Google Scholar 

  • Whitehouse, R. N. H., 1955. The production of mutations of economic value in cereal crops. Progr. Radiobiol., p. 223–227.

  • Whitehouse, R. N. H., 1958. The use of artificially induced mutations in crop improvement. Heredity 12, p. 393.

    Google Scholar 

  • Whittinghill, M., 1954. Crossover variability and induced crossing over. J. Cellular Comp. Physiol. (Suppl. 2) 45, p. 189–220.

    Google Scholar 

  • Williams, W. and Dowrick, G. J., 1958. The uptake and distribution of radioative phosphorus (32P) in relation to the mutation rate in plants. J. Hort. Sci. 33, p. 80–95.

    Google Scholar 

  • Williams, W. and Dowrick, G. J., 1958. The induction of mutations in plants using radio-active phosphorus (P32). (apple, tomato, Digitalis). Proc. 10th Int. Congr. Genetics, Montreal, II, p. 316–317.

    Google Scholar 

  • Wilson, G. B., Sparrow, A. H. and Pond, V., 1958. Radiation-induced sub-chromatid breakage and rejoining during meiosis of Trillium erectum L. Proc. 10th Int. Congr. Genetics, Montreal, II, p. 317–318.

    Google Scholar 

  • Wilson, S. M. et al., 1956. Cytological and genetical effects of the defoliant endothal. J. of Heredity 47, p. 151–155.

    Google Scholar 

  • Wolff, S., 1954. Some aspects of the chemical protection against radiation damage to Vicia faba chromosomes. Genetics 39, p. 356–364.

    Google Scholar 

  • Wolff, S., 1956. Recent studies on chromosome breakage and rejoining. Proc. 5th Int. Conf. Radiobiol., Stockholm 1956, p. 463–474.

  • Wolff, S., 1959. Interpretation of induced chromosome breakage and rejoining. Radiation Research (Suppl.) 1, p. 453–462.

    Google Scholar 

  • Wolff, S. and Luippold, H. E., 1955. Metabolism and chromosomebreak rejoining. Science 122, p. 231–232.

    Google Scholar 

  • Wolff, S. and Luippold, H. E., 1956. Recent studies on chromosome breakage and rejoining. Proc. Nat. Acad. Sc. Wash. 1956.

  • Wolff, S. and Luippold, H. E., 1956. The production of two chemically different types of chromosomal breaks by ionizing radiations. Proc. Nat. Ac. Sc. Wash. 42, p. 510–514.

    Google Scholar 

  • Wolff, S. and Luippold, H. E., 1957. Inaccuracy of anaphase bridges as a measure of radiation-induced nuclear damage. Nature 179, p. 208–209.

    Google Scholar 

  • Wolff, S. and Luippold, H. E., 1958. Modification of chromosomal aberration yield by postiradiation treatment. Genetics 43, p. 493–501.

    Google Scholar 

  • Woll, E., 1953. Einwirkung von Nukleinsäuren und ihren Baustoffen auf die Wurzelspitzenmitose. Chromosoma 5, p. 391–427.

    Google Scholar 

  • Wyss, O., Stone, W. S. and Clark, J. B., 1947. The production of mutations in Staphylococcus aureus by chemical treatment of the substrate. J. Bact. 54, p. 767.

    Google Scholar 

  • Wyss, O., Clark, J. B., Haas, F. and Stone, W. S., 1948. The role of peroxide in the biological effects of irradiated broth. J. Bact. 56, p. 51.

    Google Scholar 

  • Yagyu, P. and Morris Rosalind, 1957. Cytogenetic effects of X-rays and thermal neutrons on dormant tomato seeds. Genetics 42, p. 222–238.

    Google Scholar 

  • Yamaguchi, H., 1958. X-ray experiments on dormant seeds of six-rowed barley. Jap. Journ. of Breeding 7, p. 175–178.

    Google Scholar 

  • Yamaguchi, H., 1958. The effect of fractional X-ray dosage on sterility and mutation in dormant seeds of rice and barley. Jap. Journ. of Breeding 7, p. 213–220.

    Google Scholar 

  • Yamashita, K., 1955. Chlorophyll analyses in X-ray induced mutants in Triticum monococcum. Wheat Inform. Serv. 2, p. 16–17.

    Google Scholar 

  • Yamashita, K., 1957. X-ray induced mutations in einkorn wheats with special reference to their complex nature. Proc. Intern. Genetics Symp. Tokyo and Kyoto, 1956. p. 287–289.

  • Yamashita, K. and Okuda, M., 1958. X-ray induced mutations in Einkorn wheats. II. Pigment analysis. Wheat Information Service 7, p. 3–4.

    Google Scholar 

  • Zacharias, M., 1956. Mutationsversuche an Kulturpflanzen. VI. Röntgenbestrahlungen der Sojabohne. Der Züchter 11, p. 321–338.

    Google Scholar 

  • Zachow, F., 1958., Über die Vererbung und Auffindung einiger röntgeninduzierter Mutationen von Lupinus luteus. Der Züchter 28, p. 262–268.

    Google Scholar 

  • Zeeuw, D. de, 1957. Het “Brookhaven National Laboratory”. Versl. no. 37. Lab. v. Tuinbouwplantenteelt, Wageningen.

  • Zeeuw, D. de, 1958. Landbouwkundig rapport 2de Conferentie over de vreedzame toepassing van atoomenergie, Genève, september 1958. Gestencild rapport.

  • Zimmer, K. G., 1957. A physicist's comments on some recent papers on radiation-genetics. Hereditas 43, p. 201–210.

    Google Scholar 

  • Zimmer, K. G., Ehrenberg, L., und Ehrenberg, A., 1957. Nachweis langlebiger magnetischer Zentren in bestrahlten biologischen Medien und ihre Bedeutung für die Strahlenbiologie. Strahlentherapie 103, p. 3–15.

    Google Scholar 

  • Zwintzscher, M., 1955. Die Auslösung von Mutationen als Methode der Obstzüchtung. I. Die Isolierung von Mutanten in Anlehnung an primäre Veränderungen. Der Züchter 52, p. 290–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Lecture given for the “Studiekring voor Plantenveredeling”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakken, R. Induced mutation. Euphytica 8, 270–322 (1959). https://doi.org/10.1007/BF00039371

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039371

Keywords

Navigation