Skip to main content

Compositional dissimilarity as a robust measure of ecological distance

Abstract

The robustness of quantitative measures of compositional dissimilarity between sites was evaluated using extensive computer simulations of species' abundance patterns over one and two dimensional configurations of sample sites in ecological space. Robustness was equated with the strength over a range of models, of the linear and monotonic (rank-order) relationship between the compositional dissimilarities and the corresponding Euclidean distances between sites measured in the ecological space. The range of models reflected different assumptions about species' response curve shape, sampling pattern of sites, noise level of the data, species' interactions, trends in total site abundance, and beta diversity of gradients.

The Kulczynski, Bray-Curtis and Relativized Manhattan measures were found to have not only a robust monotonic relationship with ecological distance, but also a robust linear (proportional) relationship until ecological distances became large. Less robust measures included Chord distance, Kendall's coefficient, Chisquared distance, Manhattan distance, and Euclidean distance.

A new ordination method, hybrid multidimensional scaling (HMDS), is introduced that combines metric and nonmetric criteria, and so takes advantage of the particular properties of robust dissimilarity measures such as the Kulczynski measure.

This is a preview of subscription content, access via your institution.

References

  • Anderberg M. R. 1973. Cluster analysis for applications. Academic Press, New York.

    Google Scholar 

  • Austin M. P. 1976. Performance of four ordination techniques assuming three different non-linear species response models. Vegetation 33: 43–49.

    Google Scholar 

  • Austin M. P., 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11–21.

    Google Scholar 

  • Austin M. P., 1985. Continuum concept, ordination methods, and niche theory. Ann. Rev. Ecol. Syst. 16: 39–61.

    Google Scholar 

  • Austin M. P., 1987. Models for the analysis of species' response to environmental gradients. Vegetatio 69: 35–45.

    Google Scholar 

  • Austin M. P. & Greig-Smith P., 1968. The application of quantitative methods to vegetation survey. II. Some methodological problems of data from rain forest. J. Ecol. 56: 827–844.

    Google Scholar 

  • Austin M. P. & Noy Meir I., 1971. The problem of nonlinearity in ordination. Experiments with two-gradient models. J. Ecol. 59: 763–773.

    Google Scholar 

  • Beals E. W., 1973. Ordination: mathematical elegance and ecological naivete. J. Ecol. 61: 23–35.

    Google Scholar 

  • Beals E.W., 1984. Bray Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res. 14: 1–55.

    Google Scholar 

  • Belbin, L., Faith, D. P. & Minchin, P. R., 1984. Some algorithms contained in the numerical taxonomy package NTP CSIRO Division of Water and Land Resources, Canberra Technical Memorandum 84/23.

  • Borg I. & Lingoes J. C., 1980. A model and algorithm for multidimensional scaling with external constraints on the distances. Psychometrika 45: 25–38.

    Google Scholar 

  • Bray J. R. & Curtis J. T., 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Google Scholar 

  • Chardy P., Glemarc M. & Laurec A., 1976. Application of inertia methods to benthic marine ecology: practical implications of the basic options. Estuarine Coastal Mar. Sci. 4: 179–205.

    Google Scholar 

  • Clymo R. S., 1980. Preliminary survey of the peat-bog Hummell Knowe Moss using various numerical methods. Vegetatio 42: 129–148.

    Google Scholar 

  • Faith D. P., 1984. Patterns of sensitivity of association measures in numerical taxonomy. Math. Biosci. 69: 199–207.

    Google Scholar 

  • Faith D. P., Minchin P. R. & Belbin L., 1985. Parsimony and falsification in ecology: toward an assumption-free approach to the study of species' response to gradients. Stud. Plant Ecol. 16: 31–32.

    Google Scholar 

  • Fasham M. J. R., 1977. A comparison of non-metric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines and coenoplanes. Ecology 58: 551–561.

    Google Scholar 

  • GauchJr H. G., 1973. The relationship between sample similarity and ecological distance. Ecology 54: 618–622.

    Google Scholar 

  • GauchJr H.G., & Whittaker R. H., 1972. Comparison or ordination techniques. Ecology 53: 868–875.

    Google Scholar 

  • GauchJr H. G., Whittaker R. H. & Wentworth T. R., 1977. A comparative study of reciprocal averaging and other ordination techniques. J. Ecol. 65: 157–174.

    Google Scholar 

  • Gauch H. G., Whittaker R. H. & Singer S. B., 1981. A comparative study of non-metric ordinations. J. Ecol. 69: 135–152.

    Google Scholar 

  • Gower J. C., 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Google Scholar 

  • Gower J. C., 1967. Multivariate analysis and multidimensional geometry. The Statistician 17: 13–28.

    Google Scholar 

  • Gower J. C., 1971. A general coefficient of similarity and some of its properties. Biometrics 23: 623–637.

    Google Scholar 

  • Greig-Smith P., 1983. Quantitative plant ecology. 3rd ed. Blackwell, Oxford.

    Google Scholar 

  • Hajdu L. J. 1981. Graphical comparison of resemblance measures in phytosociology. Vegetatio 48: 47–59.

    Google Scholar 

  • Ihm P. & VanGroenewoud H., 1975. A multivariate ordering of vegetation data based on Gaussian type gradient response curves. J. Ecol. 63: 767–777.

    Google Scholar 

  • Kendall D. G., 1970. A mathematical approach to seriation. Philos. Trans. R. Soc. London A 269: 125–135.

    Google Scholar 

  • Kruskal J. B., 1964a. Multidimensional scaling by optimizing goodness-of-fit to a non-metric hypothesis. Psychometrika 29: 1–27.

    Google Scholar 

  • Kruskal J. B., 1964b. Non-metric multidimensional scaling: A numerical method. Psychometrika 29: 115–129.

    Google Scholar 

  • Lamont B. B. & Grant K. J., 1979. A comparison of twenty-one measures of site dissimilarity. In: L.Orlóci, C. R.Rao & W. M.Stiteler (eds). Multivariate methods in ecological work pp. 101–126. International Co-operative Publishing House, Fairland, Maryland.

    Google Scholar 

  • Lance G. N. & Williams W. T., 1967. Mixed data classificatory programs. I. Agglomerative systems. Aust. Comput. J. 1: 15–20.

    Google Scholar 

  • Minchin P. R., 1987a. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.

    Google Scholar 

  • Minchin, P. R., 1987b. Simulation of multidimensional community patterns: towards a comprehensive model. Vegetatio (in press).

  • Noy Meir I. & Austin M. P., 1970. Principal component ordination and simulated vegetational data. Ecology 51: 551–552.

    Google Scholar 

  • Noy Meir I., Walker D. & Williams W. T., 1975. Data transformations in ecological ordination. II. On the meaning of data standardization. J. Ecol. 63: 779–800.

    Google Scholar 

  • Orlóci L., 1967. An agglomerative method for classification of plant communities. J. Ecol. 55: 193–206.

    Google Scholar 

  • Orlóci L., 1974. Revisions for the Bray and Curtis ordination. Can. J. Bot. 52: 1773–1776.

    Google Scholar 

  • Orlóci L., 1978. Multivariate analysis in vegetation research. 2nd ed. Junk, The Hague.

    Google Scholar 

  • Orlóci L., 1980. An algorithm for predictive ordination. Vegetatio 42: 23–25.

    Google Scholar 

  • Prentice I. C., 1977. Non-metric ordination methods in ecology. J. Ecol. 65: 85–94.

    Google Scholar 

  • Prentice I. C., 1980. Vegetation analysis and order invariant gradient models. Vegetatio 42: 27–34.

    Google Scholar 

  • Shepard R. N., 1962a. Analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika 27: 125–140.

    Google Scholar 

  • Shepard R. N., 1962b. The analysis of proximities: multidimensional scaling with an unknown distance function. II. Psychometrika 27: 219–246.

    Google Scholar 

  • Shepard R. N., 1974. Representation of structure in similarity data-problems and prospects. Psychometrika 39: 373–421.

    Google Scholar 

  • Sibson R., 1972. Order invariant methods for data analysis. J. R. Statist. Soc. B 34: 311–349.

    Google Scholar 

  • Sokal R. R. & Michener C. D., 1957. The effects of different numerical techniques on the phenetic classification of bees of the Hoplitis complex (Megachilidae). Proc. Linn. Soc. London 178: 59–74.

    Google Scholar 

  • Sokal R. R. & Sneath P. H. A., 1963. Principles of numerical taxonomy. Witt. Freeman and Co., San Francisco.

    Google Scholar 

  • Swan J. M. A., 1970. An examination of some ordination problems by use of simulated vegetational data. Ecology 51: 89–102.

    Google Scholar 

  • Torgerson W. S., 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17: 401–419.

    Google Scholar 

  • Whittaker R. H., 1952. A study of summer foliage insect communities in the Great Smoky Mountains. Ecol. Monogr. 22: 1–44.

    Google Scholar 

  • Williamson M. H., 1978. The ordination of incidence data. Ecology 66: 911–920.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank M. P. Austin for encouraging this study, and I. C. Prentice, E. Van der Maarel, and an anonymous reviewer for helpful comments. E. M. Adomeit provided technical assistance.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Faith, D.P., Minchin, P.R. & Belbin, L. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69, 57–68 (1987). https://doi.org/10.1007/BF00038687

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00038687

Keywords

  • Dissimilarity measure
  • Ecological distance
  • Hybrid multidimensional scaling
  • Multidimensional scaling
  • Nonmetric
  • Ordination
  • Robustness
  • Simulation