Skip to main content
Log in

A fracture mechanics approach to the failure of graphite in laboratory tests

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Laboratory tests show that for some graphites the calculated stress at failure exceeds the tensile strength in uniform tension by an amount which depends on the test considered and increases with the severity of the stress gradient. Fracture mechanics has been applied to bend, internal pressure and diametral compression tests to investigate whether it can provide a consistent failure criterion for graphite in situations where stress gradients are important. A finite element method of analysis has been used to compute the stress distributions in specimens containing cracks of various lengths, from which energy release rates and stress intensity factors have been derived. The results indicate that there is not constant effective inherent crack size which can be employed with a constant critical stress intensity factor K IC to predict the failure conditions in the three tests considered. However, assuming a constant K IC, a relationship has been found between the effective inherent crack size responsible for failure and the maximum stress gradient in a specimen, which may be of value in developing a fracture criterion for practical purposes.

Résumé

On montre par des essais de laboratoire que, dans le cas de certains graphites, la contrainte calculée à la rupture dépasse la tension de rupture en traction uniforme d'une quantité qui dépend de l'essai et qui s'accroit avec la sévérité du gradient de contrainte. La mécanique de rupture a été appliquée à des essais de flexion, de pression interne et de compression diamétrale, afin de se rendre compte si elle pourrait fournir un critère de rupture significatif pour le graphite pour les cas où les gradients de contraintes sont importants. Une méthode d'analyse par éléments finis a été appliquée au calcul des distributions des contraintes dans des éprouvettes comportant des fissures de différentes longueurs. On en a tiré les taux de relaxation de l'énergie de déformation et les facteurs d'intensité des contraintes. Les résultats montrent qu'il n'y a pas de dimensions effectivement constantes de fissure susceptible d'être associée à un facteur d'intensité des contraintes constant K IC pour prédire la rupture dans les trois essais envisagés. Toutefois, en supposant une valeur constante pour K IC, on a pu établir une relation entre la dimension effective de la fissure provoquant la rupture et le gradient maximum de contrainte dans l'éprouvette. Cette constatation peut être intéressante pour développer un critère de rupture correspondant à des problèmes pratiques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Brocklehurst and M. I. Darby, Materials Science Engineering, 16 (1974) 91–106.

    Article  Google Scholar 

  2. J. E. Brocklehurst and R. G. Brown, Fracture, notch sensitivity and work of fracture studies on isotropic graphite, UKAEA TRG Rept. 2513(S) (1974).

  3. P. Marshall and E. K. Priddle, Carbon, 11 (1973) 541.

    Article  Google Scholar 

  4. P. Marshall and E. K. Priddle, Carbon, 11 (1973) 627.

    Article  Google Scholar 

  5. J. E. Brocklehurst and K. E. Gilchrist, The fracture of graphite ring specimens by diametral compression and internal pressure, UKAEA TRG Rept. 1774(C) (1968).

  6. J. R. Dixon and J. S. Strannigan, Journal of Strain Analysis, 7 (1972) 125–131.

    Google Scholar 

  7. P. C. Paris and G. C. Sih, Stress analysis of cracks, Symposium on fracture toughness testing and its applications, 1965 (Philadelphia, Pa) A.S.T.M. Special Technical Publication 381, 30–83.

  8. W. D. Collier, J. P. Ellington and P. M. Rees, TRESS, A finite-element code for stress analysis problems, UKAEA TRG Rept. 1813(R).

  9. O. C. Zienkiewicz, The finite-element method in structural and continuum mechanics, McGraw-Hill Book Co. Inc., New York and London (1967).

    Google Scholar 

  10. J. Corum, Journal of Nuclear Materials, 22 (1967) 41–54.

    Article  Google Scholar 

  11. C. Fairhurst and M. P. Hardy, Fracture in rocks and engineering implications, Proceedings of 3rd International Congress on Fracture, München, W. Germany.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darby, M.I. A fracture mechanics approach to the failure of graphite in laboratory tests. Int J Fract 12, 745–757 (1976). https://doi.org/10.1007/BF00037920

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037920

Keywords

Navigation