Skip to main content
Log in

A conic-section simulation analysis of two-dimensional fracture problems using the finite element method

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A conic-section simulation analysis to determine the stress intensity factors for fracture mechanics problems of practical interest using the finite element method is presented. The method makes use of elliptic displacement functions which are satisfied by the introduction of an “equivalent ellipse” obtained through first simulating the actual crack surface displacements as a part of a parabola or a hyperbola. Unlike other finite element approaches that incorporate no special crack-tip treatment, the present approach requires neither extremely small finite elements in the vicinity of the crack tip nor the computation of several strain energies. The cases examined include not only problems of the opening mode (I) or the edge-sliding mode (II), but also the combined modes of crack deformation.

Résumé

On présente une analyse par simulation permettant de déterminer les facteurs d'intensité de contraintes pour des problèmes de mécanique de rupture d'intérêt pratique, en utilisant la méthode des éléments finis. On recourt à des fonctions de déplacement elliptique, qui sont satisfaites par l'introduction d'une ellipse équivalente, obtenue en assimilant les déplacements réels en surface de la rupture à une portion de parabole ou d'hyperbole. Au contraire des autres approches par éléments finis qui ne prévoient pas un traitement particulier de l'extrémité de la fissure, la méthode proposée ne requiert ni de mailles extrêmement fines au voisinage de cette extrémité, ni de nombreux calculs d'énergies de déformation. Les cas examinés ne se limitent pas aux problèmes d'ouverture de mode I ou de mode II, mais couvrent aussi des modes combinés déformation de la fissure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Liebowitz, Fracture, Academic Press, U.S.A. (1969) 1–4.

    Google Scholar 

  2. P. C. Paris and G. C. Sih, Fracture Toughness Testing and Its Applications, STP 381, ASTM Philadelphia, U.S.A. (1965) 30–76.

    Google Scholar 

  3. A. S. Kobayashi, R. D. Cherapy and W. C. Kinsel, Journal Basic Engineering, 86 (1964) 681–684.

    Google Scholar 

  4. B. Gross and J. E. Strawley, NASA TND-2603 (1965).

  5. O. L. Bowie and D. M. Neal, International Journal of Fracture Mechanics, 6 (1970) 199–206.

    Article  Google Scholar 

  6. J. C. Newman Jr., NASA TND-6376 (1971).

  7. N. J. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Holland (1953).

    Google Scholar 

  8. D. C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw Hill, New York (1971).

    Google Scholar 

  9. J. L. Swedlow, M. L. Williams and W. H. Yang, Proceedings of the First International Conference on Fracture, 1 (1966) 259–282.

    Google Scholar 

  10. V. B. WatwoodJr., Nuclear Engineering Design, 11 (1969) 323–332.

    Article  Google Scholar 

  11. A. S. Kobayashi, D. E. Maiden, B. J. Simon and S. Iida, ASME paper no. 69-WA/PVP-12 (1969).

  12. S. K. Chan, I. S. Tuba and W. K. Wilson, Engineering Fracture Mechanics, 2 (1970) 1–17.

    Article  Google Scholar 

  13. E. Byskov, International Journal of Fracture Mechanics, 6 (1970) 159–167.

    Article  Google Scholar 

  14. W. K. Wilson and D. G. Thompson, Engineering Fracture Mechanics, 3 (1971) 97–102.

    Article  Google Scholar 

  15. D. M. Tracey, Engineering Fracture Mechanics, 3 (1971) 255–265.

    Article  Google Scholar 

  16. J. J. Oglesby and O. Lomacky, ASME Paper No. 72-PVP-19 (1972).

  17. P. D. Hilton and G. C. Sih, Methods of Analysis and Solution of Crack Problem, Noordhoff, Holland (1973).

    Google Scholar 

  18. D. F. Mowbray, Engineering Fracture Mechanics, 2 (1970) 173–176.

    Article  Google Scholar 

  19. G. P. Anderson, V. L. Ruggles and G. Stibor, International Journal of Fracture Mechanics, 7 (1971) 63–75.

    Article  Google Scholar 

  20. J. R. Dixon and J. S. Strannign, Journal of Strain Analysis, 7 (1972) 125–131.

    Google Scholar 

  21. D. J. Hayes, International Journal of Fracture Mechanics, 8 (1972) 157–165.

    Article  Google Scholar 

  22. A. S. Kobayashi, S. T. Chiu and R. Beecuwkees, Engineering Fracture Mechanics, 5 (1973) 293–305.

    Article  Google Scholar 

  23. D. M. Parks, International Journal of Fracture, 10 (1974) 487–502.

    Google Scholar 

  24. C. L. Chow and K. J. Lau, Journal of Strain Analysis (in the press).

  25. C. L. Chow and K. J. Lau, International Journal of Fracture, 12 (1976) 59–69.

    Google Scholar 

  26. I. N. Sneddon, Proceedings of the Royal Society A, 187 (1946) 229–260.

    Google Scholar 

  27. I. N. Sneddon and M. Lowengrub, Crack Problems in the Classical Theory of Elasticity, John Wiley & Sons Inc., New York (1970).

    Google Scholar 

  28. G. R. Irwin, Journal of Applied Mechanics, 24 (1957) 361–364.

    Google Scholar 

  29. P. L. Key, International Journal of Fracture Mechanics, 5 (1969) 287–296.

    Google Scholar 

  30. C. Gurney and J. Hunt, Proceedings of the Royal Society of London A299 (1967) 508–524.

    Google Scholar 

  31. M. Isida, Engineering Fracture Mechanics, 5 (1973) 647–665.

    Article  Google Scholar 

  32. O. L. Bowie, Journal of Applied Mechanics, 31 (1964) 208–212.

    Google Scholar 

  33. H. F. Bueckner, Boundary Value Problems in Differential Equations (edited by R. E. Langer), University of Wisconsin Press, U.S.A. (1960).

    Google Scholar 

  34. W. F. Brown and J. E. Strawley, Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP 410, U.S.A. (1966).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, C.L., Lau, K.J. A conic-section simulation analysis of two-dimensional fracture problems using the finite element method. Int J Fract 12, 669–684 (1976). https://doi.org/10.1007/BF00037914

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037914

Keywords

Navigation