Skip to main content

The motion of pairs of gas bubbles in a perfect liquid

Summary

In a systematic construction of a theory for bubbly liquids, one encounters the problem of the interaction between two spheres in a perfect liquid. This paper is devoted to that problem for the case in which the motion stems from the instantaneous acceleration of the liquid in which the spheres are immersed. Trajectories described by their separation vector in the course of time are numerically computed with use of the analytically obtained flow potential. An approximate theory is developed from which qualitative properties of these trajectories are obtained. The effect of the relative motion on the pair distribution in e.g., a bubbly flow is considered as well.

This is a preview of subscription content, access via your institution.

References

  1. L. van Wijngaarden, Bubble interactions in liquid/gas flows, Appl. Sci. Res. 38 (1982) 331–339.

    Google Scholar 

  2. L. van Wijngaarden, Sound and shock waves in bubbly liquids, in: Cavitation and inhomogeneities in underwater acoustics, ed. W. Lauterborn, Springer Verlag (1980).

  3. D. J. Jeffrey, Conduction through a random suspension of spheres, Proc. Roy. Soc. A 335 (1973) 355–367.

    Google Scholar 

  4. L. van Wijngaarden, Hydrodynamic interaction between gas bubbles in liquid, J. Fluid Mech. 77 (1976) 27–44.

    Google Scholar 

  5. H. Lamb, Hydrodynamics, Cambridge University Press (1945).

  6. T. Miloh and L. Landweber, Generalization of the Kelvin-Kirchhoff equations for the motion of a body through a fluid, Phys. Fluids 24 (1981) 6–9.

    Article  Google Scholar 

  7. L. Landweber and T. Miloh, Unsteady Lagally theorem for multipoles and deformable bodies, J. Fluid Mech. 96 (1980) 33–46.

    Google Scholar 

  8. L. Landweber and T. Miloh, Corrigendum on ‘Unsteady Lagally theorem for multipoles and deformable bodies’, J. Fluid Mech. 112 (1981) 502.

    Google Scholar 

  9. L. van Wijngaarden, On the motion of gasbubbles in a perfect liquid, to be published in Archive of Mechanics (1982).

  10. P. M. Morse and H. Feshbach, Methods of theoretical physics, McGraw-Hill (1953).

  11. G. K. Batchelor and J. T. Green, The determination of the bulk stress in a suspension of spherical particles to order c2, J. Fluid Mech. 56, (1972) 401–427.

    Google Scholar 

  12. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover (1964).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biesheuvel, A., Van Wijngaarden, L. The motion of pairs of gas bubbles in a perfect liquid. J Eng Math 16, 349–365 (1982). https://doi.org/10.1007/BF00037735

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037735

Keywords

  • Mathematical Modeling
  • Industrial Mathematic
  • Relative Motion
  • Flow Potential
  • Qualitative Property