Skip to main content
Log in

Study of crack-tip motion in dynamic fracture by microscopic time-resolved holography

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A novel laser system has been designed and developed for the time-resolved holographic analysis of dynamic crack propagation in thin (150 μm) glass plates. The system provides a frame-to-frame resolution of from 28.3 to 161.6 ns, with a spatial resolution of better than 25 μm. Holographic analyses were conducted using both diffuse and direct laser illumination, demonstrating a broad range of applicability for this method. A series of specimens with pre-crack lengths of from 3.5 to 10.5 mm were tested using various pre-load levels and crack-growth-initiating explosive sizes. All specimens exhibited similar dynamic fracture behavior, particularly those outside of the region of shock of the initiating explosive (those of the longer pre-crack set). A best-fit to the theoretical prediction for mode I crack growth revealed a good match to the case for a specimen ‘overloaded’ by 64 percent. However, no variation with applied load was evident, indicating that an immediate acceleration to a velocity of ≈ 1200 m/s (near the empirically determined terminal velocity) was the more plausible fit. Since the terminal velocity was approximately the same for all specimens, this investigation also demonstrated that the terminal velocity is independent of crack-tip stresses, even for the most extreme explosive pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Kelly, A.J. Frost, T. Shahrabi and R.C. Newman, Metallurgical Transactions 22A (1991) 531–541.

    Google Scholar 

  2. T. Lin, A.G. Evans and R.O. Ritchie, Journal of the Mechanics and Physics of Solids 34 (1986) 477–497.

    Google Scholar 

  3. W.J. Cantwell, A.C. Roulin-Moloney and H.H. Kausch, Journal Materials Science Letters 7 (1988) 976–980.

    Google Scholar 

  4. B. Stalder, P. Béguelin, A.C. Roulin-Moloney and H.H. Kausch, Journal of Materials Science 24 (1989) 2262–2274.

    Google Scholar 

  5. S.N. Atluri and T. Nishioka, International Journal of Fracture 27 (1985) 245–261.

    Google Scholar 

  6. K. Sieradzki, G.J. Dienes, A. Paskin and B. Massoumzadeh, Acta Metallurgica 36 (1988) 651–663.

    Google Scholar 

  7. A.A. Griffith, Philosophical Transactions A 221 (1920) 163–198.

    Google Scholar 

  8. N.F. Mott, Engineering 165 (1948) 16–18.

    Google Scholar 

  9. J.P. Berry, Journal of the Mechanics and Physics of Solids 8 (1960) 194–216.

    Google Scholar 

  10. L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, New York (1990).

    Google Scholar 

  11. H. Schardin, in Fracture, John Wiley and Sons, New York (1959) 297–330.

    Google Scholar 

  12. S. Winkler, D.A. Shockey and D.R. Curran, International Journal of Fracture Mechanics 6 (1970) 151–158, 271–278.

    Google Scholar 

  13. S. Suzuki, H. Homma and R. Kusaka, Journal of the Mechanics and Physics of Solids 36 (1988) 631–653.

    Google Scholar 

  14. S. Suzuki and T. Nakajima, Dynamic Fracture Mechanics for the 1990's, ASME PVP-Vol. 160, H. Homma, D.A. Schockey, G. Yagawa (eds.) ASME (1989).

  15. S.M. Kamath and K.S. Kim, International Journal of Fracture 31 (1986) R57-R62.

    Google Scholar 

  16. C. Thaulow and W. Burget, Fatigue and Fracture of Engineering Materials and Structures 13 (1990) 327–346.

    Google Scholar 

  17. H.P. Rossmanith and W.L. Fourney, Engineering Fracture Mechanics 16 (1982) 837–844.

    Google Scholar 

  18. E.B. Shand, Journal of the American Ceramics Society 37 (1954) 559–572.

    Google Scholar 

  19. J. Congleton and N.J. Petch, Philosophical Magazine 16 (1967) 749–760.

    Google Scholar 

  20. F. Kerkhof, Naturwissenschagten 40 (1953) 478.

    Google Scholar 

  21. F. Kerkhof, Proceedings of the Third International Congress on High-Speed Photography, London (1956) 194.

  22. T.A. Michalske and V.D. Fréchette, International Journal of Fracture 17 (1981) 251–256.

    Google Scholar 

  23. J.M. Lowes and G.D. Fearnehough, Engineering Fracture Mechanics 3 (1971) 103–108.

    Google Scholar 

  24. J.A. Joyce and C.S. Schneider, Journal of Testing and Evalutation 16 (1988) 257–270.

    Google Scholar 

  25. C.R. Barnes, Experimental Techniques 9 (1985) 33–37.

    Google Scholar 

  26. A. Kobayashi, N. Ohtani and M. Munemura, Journal of Applied Polymer Science 25 (1980) 2789–2793.

    Google Scholar 

  27. B.A. Crouch and J.G. Williams, Engineering Fracture Mechanics 26 (1987) 553–566.

    Google Scholar 

  28. J. Fineberg, S.P. Gross, M. Marden and H.L. Swinney, Physical Review Letters 67 (1991) 457–460.

    Google Scholar 

  29. R.G. Racca and J.M. Dewey, Applied Optics 28 (1989) 3652–3656.

    Google Scholar 

  30. R.G.N. Hall, J.W.C. Gates and I.N. Ross, Journal of Physics E: 3 (1970) 789–791.

    Google Scholar 

  31. G.V. Ostrovskaya and Y.I. Ostrovsky, in Progress in Optics XXII, North-Holland Publishing Corp. (1985) 197–270.

  32. T. Tschudi, C. Yamanaka, T. Sasaki, K. Yoshida and K. Tanake, Journal of Physics D: D11 (1978) 177–180.

    Google Scholar 

  33. K.S. Thomas, C.R. Harder, W.E. Quinn and R.E. Siemon, Physics of Fluids 15 (1972) 1658–1666.

    Google Scholar 

  34. Y. Yamamoto, in Proceedings of SPIE's 18th International Congress on High Speed Photography and Photonics, Vol. 1032, SPIE, Bellingham, WA (1988) 587–594.

    Google Scholar 

  35. J.M. Landry and A.E. McCarthy, Optical Engineering 14 (1975) 69–72.

    Google Scholar 

  36. J.U. White, Journal of the Optical Society of America 32 (1942) 285–288.

    Google Scholar 

  37. J.B. Deaton, A.D.W. McKie, J.B. Spicer and J.W. Wagner, Applied Physics Letters 56 (1990) 2390–2392.

    Google Scholar 

  38. M.J. Ehrlich, J.S. Steckenrider and J.W. Wagner, in 1992 Review of Progress in Quantitative NDE, La Jolla, California (1992).

  39. J.S. Steckenrider, M.J. Ehrlich and J.W. Wagner, in Proceedings of the 1991 SPIE International Symposium on Optical Applied Science and Engineering, SPIE, Bellingham, WA (1991).

  40. J.S. Steckenrider and J.W. Wagner, International Journal of Fracture 55 (1992) R55-R57.

    Google Scholar 

  41. D.K. Roberts and A.A. Wells, Engineering 178 (1954) 820–821.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steckenrider, J.S., Wagner, J.W. Study of crack-tip motion in dynamic fracture by microscopic time-resolved holography. Int J Fract 73, 213–222 (1995). https://doi.org/10.1007/BF00037644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037644

Keywords

Navigation