Skip to main content
Log in

Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Summary

Root proliferation can be induced by Agrobacterium rhizogenes on carrot discs both on the apical and basal surface (facing the root apex and base, respectively) or on the apical surface only, depending on the bacterial strain. This differential response on the two surfaces is denominated polarity. We correlate the polarity of some strains with the absence of an Ri plasmid genetic locus, present in non polar strains such as A. rhizogenes 1855, which bears sequence homology with the auxin genes of Ti plasmid T-DNA. We demonstrate that this locus is responsible for root induction on the basal surface since insertion of a transposon in this region of pRi1855 induces polarity in this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elliot C: Manual of Bacterial Plant Pathogens, 2nd rev. edn. Chronica Botanica, Waltham, Mass., 1951.

    Google Scholar 

  2. Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J: Agrobacterium rhizogenes inserts T-DNA into the genome of host plant root cells. Nature 295:432–434, 1982.

    Google Scholar 

  3. White FF, Ghidossi G, Gordon MP, Nester EW: Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79:3193–3197, 1982.

    Google Scholar 

  4. Willmitzer L, Sanchez-Serrano J, Buschfeld E, Schell J: DNA from Agrobacterium rhizogenes is transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet 186:16–22, 1982.

    Google Scholar 

  5. Spanò L, Pomponi M, Costantino P, van Slogteren GMS, Tempé J: Identification of T-DNA in the root inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291–300, 1982.

    Google Scholar 

  6. Ackermann C: Pflanzen aus Agrobacterium rhizogenes Tumoren an Nicotiana tabacum. Plant Sci Lett 8:23–30, 1977.

    Google Scholar 

  7. Spanò L, Costantino P: Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on tobacco. Z Pflanzenphysiol 106:82–92, 1982.

    Google Scholar 

  8. David C, Chilton MD, Tempé J: Conservation of T-DNA in plants regenerated from hairy root cultures. Biotechnology 2:73–76, 1984.

    Google Scholar 

  9. Costantino P, Spanò L, Pomponi M, Benvenuto E, Ancora G: The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants. J Mol Appl Genet 2: 465–470, 1984.

    Google Scholar 

  10. Tepfer D: Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967, 1984.

    Google Scholar 

  11. Costantino P, Mauro ML, Micheli G, Risuleo G, Hooykaas PJJ, Schilperoort RA: Fingerprinting and sequence homology of plasmids from different virulent strains of Agrobacterium rhizogenes. Plasmid 5:170–182, 1981.

    Google Scholar 

  12. Petit A, David C, Dahl G, Ellis JG, Guyon P, Casse-Delbart F, Tempé J: Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214, 1983.

    Google Scholar 

  13. Petit A, Tempé J: The function of T-DNA in nature. In: van Vloten-Doting L, Groot G, Hall T (eds) Molecular Form and Function of the Plant Genome. Plenum Press, N.Y., 1985 (in press).

    Google Scholar 

  14. De Paolis A, Mauro ML, Pomponi M, Cardarelli M, Spanò L, Costantino P: Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7, 1985.

    Google Scholar 

  15. Huffman GA, White FF, Gordon MP, Nester EW: Hairy root inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157:269–276, 1984.

    Google Scholar 

  16. Ryder MH, Tate ME, Kerr A: Virulence properties of strains of Agrobacterium on the apical and basal surfaces of carrot root discs. Plant Physiol 77:215–221, 1985.

    Google Scholar 

  17. Ish-Horowicz D, Burke JF: Rapid and efficient cosmid cloning. Nucl Acids Res 9:2989–2998, 1981.

    Google Scholar 

  18. Dhaese P, De Greve H, Decraemer H, Schell J, Van Montagu M: Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens. Nucl Acids Res 7:1837–1849, 1979.

    Google Scholar 

  19. Merrick M, Filser M, Kennedy C, Dixon R: Polarity of mutations induced by insertion of transposon Tn5, Tn7 and Tn10 into the nif gene cluster of Klebsiella pneumoniae. Mol Gen Genet 165:103–111, 1978.

    Google Scholar 

  20. Pomponi M, Spanò L, Sabbadini MG, Costantino P: Restriction endonuclease mapping of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 10:119–129, 1983.

    Google Scholar 

  21. Miller JH. Experiments in molecular genetics. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory.

  22. Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rörsch A: Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent Agrobacteria and to Rhizobium explanta. J Gen Microbiol 98:477–484, 1977.

    Google Scholar 

  23. Pilet PE: Auxin content and auxin catabolism in relation to the growth polarity. Physiol Plant 20:285–290, 1967.

    Google Scholar 

  24. Yang F, Montoya AL, Merlo DJ, Drummond MH, Chilton MD, Nester EW, Gordon P: Foreign DNA sequences in crown gall teratomas and their fate during the loss of the tumorous traits. Mol Gen Genet 177:707–714, 1980.

    Google Scholar 

  25. Engler G, Depicker A, Maenhaut R, Villaroel R, Van Montagu M, Schell J: Physical mapping of DNA base sequence homologies between an octopine and a nopaline Ti plasmid of Agrobacterium tumefaciens. J Mol Biol 152:183–208, 1981.

    Google Scholar 

  26. Bevan MW, Chilton MD: Multiple transcripts of T-DNA detected in nopaline crown gall tumours. J Mol Appl Genet 1:539–546, 1982.

    Google Scholar 

  27. Willmitzer L, Dhaese P, Schreier PH, Schmalenbach W, Van Montagu M, Schell J: Size, location and polarity of T-DNA encoded transcripts in nopaline crown gall tumours: common transcripts in octopine and nopaline tumours. Cell 32:1045–1056, 1983.

    Google Scholar 

  28. Inzé D, Follin A, Van Lijsebettens M, Simoens C, Genetello C, Van Montagu M, Schell J: Genetic analysis of individual T-DNA genes of A. tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194:265–274, 1984.

    Google Scholar 

  29. Chilton MD, Drummond MH, Merlo DJ, Sciaky D: Highly conserved DNA of Ti plasmids overlaps T-DNA maintained in plant tumours. Nature 275:147–149, 1978.

    Google Scholar 

  30. Depicker A, Van Montagu M, Schell J: Homologous DNA sequences in different Ti plasmids are essential for oncogenicity. Nature 275:150–152, 1978.

    Google Scholar 

  31. Thomahow MF, Knauf VC, Nester EW: Relationship between the limited and wide host range octopine type Ti plasmids of Agrobacterium tumefaciens. J Bacteriol 146:484–493, 1981.

    Google Scholar 

  32. Magnus W: Wund-callus und Bakterien-Tumoren. Ber Deutsch Bot Ges 36:20–29, 1918.

    Google Scholar 

  33. Klein MR, Tenenbaum IL: A quantitative bioassay for crown gall tumor formation. Am J Bot 42:709–712, 1955.

    Google Scholar 

  34. Ooms G, Hooykaas PJJ, Moolenaar G, Schilperoort RA: Crown gall plant tumours of abnormal morphology induced by A. tumefaciens carrying mutated octopine Ti plasmids: analysis of T-DNA functions. Gene 14:33–50, 1981.

    Google Scholar 

  35. Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP: T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998, 1984.

    Google Scholar 

  36. Goldsmith MHM: The polar transport of auxin. Ann Rev Plant Physiol 28:439–478, 1977.

    Google Scholar 

  37. De Vos G, De Beuckeleer M, Van Montagu M, Schell J: Restriction endonuclease mapping of the octopine tumor-inducing plasmid pTiAch5 of Agrobacterium tumefaciens. Plasmid 6:249–253, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardarelli, M., Spanò, L., De Paolis, A. et al. Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855. Plant Mol Biol 5, 385–391 (1985). https://doi.org/10.1007/BF00037559

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037559

Keywords

Navigation