Skip to main content
Log in

Influence of state of stress on mixed mode stable crack growth through D16AT aluminium alloy

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The stable crack growth through three-point bend (TPB) and stiffened and unstiffened compact tension (CT) specimens of D16AT aluminium alloy has been studied both theoretically and experimentally. The specimen thickness is 8 mm. The variation of load with crack opening displacement, the extent of stable crack growth, the cumulative plastically deformed zone and crack edge profiles have been obtained experimentally. These are also predicted theoretically under the assumption of either a state of plane stress or plane strain using a finite element scheme and the COA criterion. Generally, the experimental results agree well with the predictions based on the plane stress condition. There appears to be no significant variation in size of the experimental cumulative plastic zone across the specimen thickness, thereby indicating that the constraint on the plastic zone does not develop near the mid-thickness region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Clarke, W.R. Andrews, P.C. Paris and D.W. Schmidt, Mechanics of Crack Growth, ASTM STP 590 (1976) 27–42.

  2. C.A. Griffis and G.R. Yoder, Transactions of ASME, Journal of Engineering Materials Technology 98 (1976) 152–158.

    Google Scholar 

  3. P.C. Paris, H. Tada, Z. Zahoor and H. Ernst, Elastic-Plastic Fracture, ASTM STP 668 (1979) 5–36.

  4. C.F. Shih, H.G. de Lorenzi and W.R. Andrews, Elastic-Plastic Fracture, ASTM STP 668 (1979) 65–120.

  5. G. Green and J.F. Knott, Journal of the Mechanics and Physics of Solids 23 (1975) 167–183.

    Google Scholar 

  6. J.W. Hutchinson, Journal of Applied Mechanics 50 (1983) 1042–1051.

    Google Scholar 

  7. L. Hermann and J.R. Rice, Metal Science 14 (1980) 285–291.

    Google Scholar 

  8. J.C. Newman, Jr., Elastic-Plastic Fracture Mechanics Technology, ASTM STP 896 (1985) 5–98.

  9. D.K. Mahanty and S.K. Maiti, Engineering Fracture Mechanics 37 (1990) 1237–1250.

    Google Scholar 

  10. S.K. Maiti and D.K. Mahanty, Engineering Fracture Mechanics 37 (1990) 1251–1275.

    Google Scholar 

  11. J.C. Amazigo and J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 25 (1977) 81–97.

    Google Scholar 

  12. J.R. Rice, W.J. Drugan and T.-L. Sham, Fracture Mechanics: Twelfth Conference, ASTM STP 700 (1980) 189–221.

  13. Y.C. Gao, International Journal of Fracture 34 (1987) 111–129.

    Google Scholar 

  14. V. Dunayevsky and J.D. Achenbach, Journal of Applied Mechanics 49 (1982) 646–647.

    Google Scholar 

  15. J.D. Achenbach, M.F. Kanninen and C.H. Popelar, Journal of the Mechanics and Physics of Solids 29 (1981) 211–225.

    Google Scholar 

  16. R.H. Dean and J.W. Hutchinson, Fracture Mechanics: Twelfth Conference, ASTM STP 700 (1980) 383–405.

  17. R.H. Dean, Elastic-Plastic Fracture: Second Symposium, ASTM STP 803 (1983) 139–151.

  18. P.S. Lam and R.M. McMeeking, Journal of the Mechanics and Physics of Solids 32 (1984) 395–414.

    Google Scholar 

  19. P.S. Lam, Ph.D. thesis, Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign (1982).

  20. E.P. Sorensen, Elastic-Plastic Fracture, ASTM STP 668 (1979) 151–174.

  21. T.-L. Sham, Elastic-Plastic Fracture: Second Symposium, ASTM STP 803 (1983) I52–I79.

  22. P. Ponte Castaneda, Journal of the Mechanics and Physics of Solids 35 (1987) 227–268.

    Google Scholar 

  23. X. Deng and A.J. Rosakis, International Journal of Fracture 57, Part I (1992) 291–308.

    Google Scholar 

  24. X. Deng and A.J. Rosakis, International Journal of Fracture 58, Part II (1992) 137–156.

    Google Scholar 

  25. W.J. Drugan and Xing-Yu Chen, Journal of the Mechanics and Physics of Solids 37 (1989) 1–26.

    Google Scholar 

  26. R. Narasimhan, A.J. Rosakis and J.F. Hall, Journal of Applied Mechanics 54, Part I, (1987) 846–853; 54, Part II, (1987) 846–853.

    Google Scholar 

  27. N. Liu and W.J. Drugan, International Journal of Fracture 59 (1993) 265–289.

    Google Scholar 

  28. Y.C. Gao and S. Nemat-Nasser, Mechanics of Materials 2 (1983) 305–317.

    Google Scholar 

  29. Y.C. Gao and S. Nemat-Nasser, Journal of the Mechanics and Physics of Solids 32 (1984) 1–19.

    Google Scholar 

  30. H. Andersson, Journal of the Mechanics and Physics of Solids 21 (1973) 337–356.

    Google Scholar 

  31. A.U. de Koning, Proceedings ICF 4, 1977, Waterloo, D.M.R. Taplin (ed), Vol. 3A, Pergamon Press (1987) 25–32.

  32. A. Luxmoore, M.F. Light and W.T. Evans, International Journal of Fracture 13 (1977) 257–259.

    Google Scholar 

  33. J.C. Newman, Jr., Fracture Mechanics Fifteenth Symposium, ASTM STP 833 (1984) 93–117.

  34. M.F. Kanninen, E.F. Rybicki, R.B. Stonesifer, D. Broek, A.R. Rosenfeld, C.W. Marschall and G.T. Hahn, Elastic-Plastic Fracture, ASTM STP 668 (1979) 121–150.

  35. C.F. Shih, Journal of the Mechanics and Physics of Solids 29 (1981) 305–326.

    Google Scholar 

  36. B. Cotterell, B. Lee and Y.W. Mai, International Journal of Fracture 20 (1982) 243–250.

    Google Scholar 

  37. J.C. Newman, Jr., B.C. Booth and K.N. Shivkumar, Fracture Mechanics: 18th Symposium, ASTM STP 945 (1988) 665–685.

  38. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford University Press, Oxford (1985) 367.

    Google Scholar 

  39. P. Albrecht, W.R. Andrews, J.P. Gudas, J.A. Joyce, F.J. Loss, D.E. McCabe, D.W. Schmidt and W.A. Van Der Sluys, Journal of Testing and Evaluation 10 (1982) 245–251.

    Google Scholar 

  40. J.P. Gudas and D.A. Davis, Journal of Testing and Evaluation 10 (1982) 252–262.

    Google Scholar 

  41. J.W. Hutchinson and P.C. Paris, Elastic-Plastic Fracture, ASTM STP 668 (1979) 37–64.

  42. J.C. Newman, Jr., Elastic-Plastic Fracture Mechanics Technology, ASTM STP 896 (1985) 5–98.

  43. J.C. Newman, Jr., S.R. McNeill and M.A. Sutton, Fracture Mechanics: Eighteenth Symposium, STP 945 (1988) 103–117.

  44. S.K. Maiti and P.D. Savla, Engineering Fracture Mechanics 44 (1993) 721–733.

    Google Scholar 

  45. S.K. Maiti and A.S. Keshbat, International Journal of Fracture 60 (1993) 179–194.

    Google Scholar 

  46. S.K. Maiti and A.-H.I. Mourad, Part I, Report No. ARDB-STR-93-636-01, Mechanical Engineering Department. IIT Bombay, April (1993).

  47. S.K. Maiti and A.-H.I. Mourad, Part II, Report No. ARDB-STR-93-636-01. Mechanical Engineering Department, IIT Bombay, April (1993).

  48. G. Petzow, Metallographic Etching, American Society for Metals, Ohio (1978).

    Google Scholar 

  49. S.K. Maiti and R. Sethuraman, Engineering Fracture Mechanics 41 (1992) 349–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mourad, AH.I., Maiti, S.K. Influence of state of stress on mixed mode stable crack growth through D16AT aluminium alloy. Int J Fract 72, 241–258 (1995). https://doi.org/10.1007/BF00037313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037313

Keywords

Navigation