Skip to main content
Log in

Generalized stress intensity factors in linear elastostatics

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The solution of two-dimensional linear elastostatic problems in the neighborhood of singular points is discussed. A reliable and efficient method for computing the eigenpairs that characterize the exact solution and their coefficients, called the generalized stress intensity factors, by the finite element method is demonstrated.

Examples, representing three very different kinds of singular points demonstrate that the method works well and produces results of high accuracy. Importantly, the method is applicable to anisotropic materials, multi-material interfaces, and cases where the singularities are characterized by complex eigenpairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing, England (1985).

    Google Scholar 

  2. R.D. Gregory, Journal of Elasticity 9 (1979) 283–309.

    Google Scholar 

  3. W.M. Zajaczkowski, in Proceedings of the Conference on Applications of Multiple Scaling in Mechanics, Ciarlet and Sanchez-Palencia (eds.), Masson, Paris (1987).

    Google Scholar 

  4. M.L. Williams, Journal of Applied Mechanics 19 (1952) 526–528.

    Google Scholar 

  5. Z. Suo, Ph. D. dissertation, Harvard University, Cambridge, Massachusetts, USA, May 1989.

    Google Scholar 

  6. Y. Murakami, Stress Intensity Factors Handbook, Vol. 1 and 2, Pergamon Press, NY, (1987).

    Google Scholar 

  7. J.R. Whiteman and J.E. Akin, in The Mathematics of Finite Elements and Applications, Vol. 3, J.R. Whiteman (ed.), Academic Press (1979) 35–54.

  8. S.N. Atluri and M. Nakagaki, in Computational Methods in the Mechanics of Fracture, S.N. Atluri (ed.), Elsevier, Amsterdam (1986) 169–227.

    Google Scholar 

  9. B.A. Szabó and I. Babuška, in Fracture Mechanics: Nineteenth Symposium, ASTM STP 969, T.A. Cruse (ed.), Philadelphia (1988) 101–124.

  10. Z. Yosibash, and B. Schiff, International Journal of Fracture 62 No. 4 (1993) 325–340.

    Google Scholar 

  11. I. Babuška and A. Miller, International Journal of Numerical Methods in Engineering 20 (1984) 1111–1129.

    Google Scholar 

  12. L. Banks-Sills and D. Sherman, International Journal of Fracture 32 (1986) 127–140.

    Google Scholar 

  13. K.Y. Lin and J.W. Mar, International Journal of Fracture 12 (1976) 521–531.

    Google Scholar 

  14. C. Hong and M. Stern, Journal of Elasticity 8 (1978) 21–34.

    Google Scholar 

  15. P.P.L. Matos, R.M. McMeeking, P.G. Charalambides and M.D. Drory, International Journal of Fracture 40 (1989) 235–254.

    Google Scholar 

  16. S.B. Cho, K.R. Lee, Y.S. Choy and R. Yuuki, Engineering Fracture Mechanics 43 (1992) 603–614.

    Google Scholar 

  17. G.C. Sih and E.P. Chen, Cracks in Composite Materials, Martinus Nijhoff, Boston (1981).

    Google Scholar 

  18. J.P. Dempsey and G.B. Sinclair, Journal of Elasticity 11 (1981) 317–327.

    Google Scholar 

  19. X. Ying, D.Sc. dissertation, Washington University, St. Louis, MO, USA, Dec. 1986.

    Google Scholar 

  20. R.S. Barsoum, International Journal of Numerical Methods in Engineering 26 (1988) 541–554.

    Google Scholar 

  21. L. Gu and T. Belytschko, International Journal of Solids and Structures 31 No. 6 (1994) 865–889.

    Google Scholar 

  22. P. Papadakis, Ph.D. dissertation, University of Maryland, College Park, Maryland, USA, Dec. 1988.

    Google Scholar 

  23. Z. Yosibash and B.A. Szabó, International Journal of Numerical Methods in Engineering 38 (1995) 2055–2082.

    Google Scholar 

  24. B.A. Szabó and Z. Yosibash, International Journal of Numerical Methods in Engineering 39 (1996) to appear.

  25. J.P. Dempsey, Journal of Adhesion Science Technology 9 No. 2 (1995) 253–265.

    Google Scholar 

  26. B.A. Szabó and I. Babuška, Finite Element Analysis, John-Wiley and Sons, New York (1991).

    Google Scholar 

  27. J.R. Rice and G.C. Sih, Transactions ASME, Journal of Applied Mechanics 32 (1965) 418–423.

    Google Scholar 

  28. B.A. Szabó, I. Babuška and B.K. Chayapathy, International Journal of Numerical Methods in Engineering 28 (1989) 2175–2190.

    Google Scholar 

  29. T.C.T. Ting, International Journal of Solids and Structures 22 No. 9 (1986) 965–983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research performed while the author served as a visiting assistant professor at Washington University in St. Louis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yosibash, Z., Szabó, B.A. Generalized stress intensity factors in linear elastostatics. Int J Fract 72, 223–240 (1995). https://doi.org/10.1007/BF00037312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037312

Keywords

Navigation