Skip to main content
Log in

Novel DNA structures resulting from dTam3 excision in tobacco

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A Tam3 two-element system has been designed by combining an immobilized Tam3 element with a non-autonomous dTam3 element inserted into the HPT gene. The phenotypic assay employed, restored hygromycin resistance, indicated thattrans-activation of the non-autonomous dTam3 element occurred. Molecular analyses of the excision sites revealed that the ends of the dTam3 element remain in the empty donor sites. The predominant consequence of this type of excision appears to be that excised fragments fail to re-integrate into the tobacco genome. Only one case of dTam3 re-integration could be detected. The ends of this element had been degraded upon integration into the tobacco genome. Either the altered structure of the Tam3 derivatives or tobacco host factors are influencing thetrans-activation of a dTam3 element, resulting in aberrant excision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker B, Coupland G, Federoff N, Starlinger P, Schell J: Phenotypic assay for excision of the maize controlling elementAc in tobacco. EMBO J: 154-1554 (dy1987).

  2. Coen ES, Carpentier R, Martin C: Transposable elements generate novel spatial patterns of gene expression inAntirrhinum majus. Cell 47: 285–296 (1986).

    Google Scholar 

  3. Coen ES, Robbins TP, Almeida J, Hudson A, Carpentier R: Consequences and mechanisms of transposition inAntirrhinum majus. In: Berg DE, Howe MM (eds) Mobile DNA, p. 413–437. American Society for Microbiology (1989).

  4. Dower WJ, Miller JF, Ragsdale CW: High efficiency transformation ofE. coli by high voltage electroporation. Nucl Acids Res 16: 6127–6145 (1988).

    Google Scholar 

  5. Engels WR, Johnson-Schiltz DM, Eggleston WB, Sved J: High-frequency P-element loss inDrosophila is homolog dependent. Cell 62: 515–525 (1990).

    Google Scholar 

  6. Federoff N: Maize transposable elements. In: Berg DE, Howe MM (eds) Mobile DNA, pp. 375-411. American Society for Microbiology (1989).

  7. Fedoroff N: About maize transposable elements and development. Cell 56: 18L191 (1989).

    Google Scholar 

  8. Gierl A, Lutticke S, Saedler H: TnpA product encoded by the transposable element En-1 ofZea mays is a DNA binding protein. EMBO J 7: 4045–4053 (1988).

    Google Scholar 

  9. Greenblatt IM: A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, Modulator, in maize. Genetics 108: 417–485 (1984).

    Google Scholar 

  10. Haring MA, Gao J, Volbeda T, Rommens CMT, Nijkamp HJJ, Hille J: A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants. Plant Mol Biol 13: 189–201 (1989).

    Google Scholar 

  11. Haring MA, Rommens CMT, Nijkamp HJJ, Hille J: The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies. Plant Mol Biol 16: 449–461 (1991).

    Google Scholar 

  12. Haring MA, Teeuwen-De Vroomen MJ, Nijkamp HJJ, Hille J:Trans-activation of an artificial dTam3 transposable element in transgenic tobacco plants. Plant Mol Biol 16: 39–48 (1991).

    Google Scholar 

  13. Hehl R, Baker B: Induced transposition ofDs by a stableAc in crosses of transgenic tobacco plants. Mol Gen Genet 217: 53–59 (1989).

    Google Scholar 

  14. Hehl R, Baker B: Properties of the maize transposable element Activator in transgenic tobacco plants: a versatile interspecies genetic tool. Plant Cell 2: 709–721 (1990).

    Google Scholar 

  15. Hehl R, Nacken WKF, Krause A, Saedler H, Sommer H: Structural analysis of Tam3, a transposable element fromAntirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol Biol 16: 369–371 (1991).

    Google Scholar 

  16. Hudson AD, Carpenter R, Coen ES: Phenotypic effects of short range and aberrant transposition inAntirrhinum majus. Plant Mol Biol 14: 835–844 (1990).

    Google Scholar 

  17. Jones JDG, Carland F, Lim E, Ralston E, Dooner H: Preferential transposition of the maize element Activator (Ac) to linked chromosomal locations in tobacco. Plant Cell 2: 701–707 (1990).

    Google Scholar 

  18. Kaufmann PD, Doll RF, Rio DC:Drosophila P element transposase recognizes internal P element sequences. Cell 59: 359–371 (1989).

    Google Scholar 

  19. Kunze R, Starlinger P: The putative transposase of transposable element Ac fromZea mays L. interacts with subterminal sequences of Ac. EMBO J 8: 3177–3185 (1989).

    Google Scholar 

  20. Martin C, Carpenter R, Sommer H, Saedler H, Coen EC: Molecular analysis of instability in flower pigmentation ofAntirrhinum majus, following isolation of thepallida locus by transposon tagging. EMBO J 4: 1625–1630 (1985).

    Google Scholar 

  21. Martin C, Prescott A, Lister C, MacKay S: Activity of the transposon Tam3 inAntirrhinum and tobacco: possible role of DNA methylation. EMBO J 8: 997–1004 (1989).

    Google Scholar 

  22. Masson P, Federoff N: Mobility of the maizeSuppressor-mutator element in transgenic tobacco. Proc Natl Acad Sci USA 86: 2219–2223 (1989).

    Google Scholar 

  23. Masson P, Strem M, Federoff N: ThetnpA andtnpD gene products of the Spm element are required for transposition in tobacco. Plant Cell 3: 73–85 (1991).

    Google Scholar 

  24. O'Hare K, Rubin GM: Structures of P-transposable elements and their sites of insertion and excision in theDrosophila melanogaster genome. Cell 34: 25–35 (1983).

    Google Scholar 

  25. Pereira A, Saedler H: Transpositional behavior of the maize En/Spn element in transgenic tobacco. EMBO J 8: 1315–1321 (1989).

    Google Scholar 

  26. Robbins TP, Carpenter R, Coen ES: A chromosome rearrangement suggests that donor and recipient sites are associated during Tam3 transposition inAntirrhinum majus. EMBO J 8: 5–13 (1989).

    Google Scholar 

  27. Saedler H, Nevers P: Transposition in plants: a molecular model. EMBO J 4: 585–590 (1985).

    Google Scholar 

  28. Saiki RK, Gelfand DH, Stoffel S, Schraf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA: primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491 (1988).

    Google Scholar 

  29. Sanger F, Nicklen S, Coulson R: DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1980).

    Google Scholar 

  30. Searles LL, Greenleaf AL, Kemp WE, Voelker RA: Sites of P-element insertion and structures of P-element deletions in the 5′ region of theDrosophila melanogaster RpII215. Mol Cell Biol 6: 3312–3319 (1986).

    Google Scholar 

  31. Sommer H, Bonas U, Saedler H: Transposon-induced alterations in the promoter region affect transcription of the chalcone synthase gene ofAntirrhinum majus. Mol Gen Genet 211: 49–55 (1988).

    Google Scholar 

  32. Sundaresan V, Freeling M: An extrachromosonal form of the Mu transposons in maize. Proc Natl Acad Sci USA: 84: 4924–4928 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haring, M.A., Scofield, S., Teeuwen-de Vroomen, M.J. et al. Novel DNA structures resulting from dTam3 excision in tobacco. Plant Mol Biol 17, 995–1004 (1991). https://doi.org/10.1007/BF00037139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037139

Key words

Navigation