Skip to main content
Log in

Isolation, sequence and expression in Escherichia coli of the nitrite reductase gene from the filamentous, thermophilic cyanobacterium Phormidium laminosum

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The nitrite reductase (NiR) gene (nirA) has been isolated and sequenced from the filamentous, thermophilic non-N2-fixing cyanobacterium Phormidium laminosum. Putative promoter-like and Shine-Dalgarno sequences appear at the 5′ end of the 1533 bp long nir-coding region. The deduced amino acid sequence of NiR from P. laminosum corresponds to a 56 kDa polypeptide, a size identical to the molecular mass previously determined for the pure enzyme, and shows a high identity with amino acid sequences from ferredoxin-dependent NiR. This cyanobacterial NiR gene has been efficiently expressed in Escherichia coli DH5α from the E. coli lac promoter and probably from the P. laminosum NiR promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

IPTG:

isopropyl-β-D-thiogalactopyranoside

NiR:

nitrite reductase

NR:

nitrate reductase

NT:

nitrate transport

SiR:

sulfite reductase

References

  1. Aparicio PJ, Knafi DB, Malkin R: The role of an ironsulfur center and siroheme in spinach nitrite reductase. Arch Biochem Biophys 169: 102–107 (1975).

    Google Scholar 

  2. Arizmendi JM, Serra JL: Purification and some properties of the nitrite reductase from the cyanobacterium Phormidium laminosum. Biochim Biophys Acta 1040: 239–244 (1990).

    Google Scholar 

  3. Back E, Burkhart W, Moyer M, Privalle L, Rothstein S: Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrite induction. Mol Gen Genet 212: 20–26 (1988).

    Google Scholar 

  4. Bell AI, Gaston KL, Cole JA, Busby SJW: Cloning of binding sequences for the Escherichia coli transcription activators, FNR and CRP: location of bases involved in discrimination between FNR and CRP. Nucl Acid Res 17: 3865–3874 (1989).

    Google Scholar 

  5. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–256 (1976).

    Google Scholar 

  6. Castenholz RW: Laboratory culture of thermophilic cyanophytes. Schweiz Z Hydrol 36: 1025–1029 (1970).

    Google Scholar 

  7. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acid Res 12: 387–395 (1984).

    Google Scholar 

  8. Flores E, Ramos JL, Herrero A, Guerrero MG: Nitrate assimilation by cyanobacteria. In: Papageorgieu GC, Parker L (eds) Photosynthetic Prokaryotes: Cell Differentiation and Function. pp. 363–367. Elsevier Science Publishing, New York (1983).

    Google Scholar 

  9. Flores E, Romero JM, Guerrero MG, Losada M: Regulatory interaction of photosynthetic nitrate utilization and carbon dioxide fixation in the cyanobacterium Anacystis nidulans. Biochim Biophys Acta 725: 529–532 (1983).

    Google Scholar 

  10. Fresnedo O, Serra JL: Effect of nitrogen starvation on the biochemistry of Phormidium laminosum (Cyanophyceae). J Phycol 28: 786–793 (1992).

    Google Scholar 

  11. Friemann A, Brinkmann K, Hachtel W: Sequence of a cDNA encoding nitrite reductase from the tree Betula pendula and identification of conserved protein regions. Mol Gen Genet 231: 411–416 (1992).

    Google Scholar 

  12. Garbisu C, Gil JM, Bazin MJ, Hall DO, Serra JL: Removal of nitrate from water by free-living and polyvinylimmobilized Phormidium laminosum in batch and continuous-flow bioreactors. J Appl Phycol 4: 221–234 (1991).

    Google Scholar 

  13. Garbisu C, Hall DO, Serra JL: Nitrate and nitrite uptake by freeliving and immobilized Nstarved cells of Phormidium laminosum. J Appl Phycol 4: 139–148 (1992).

    Google Scholar 

  14. Guerrero MG, Lara C: Assimilation of inorganic nitrogen. In: Fay P, VanBaalen C (eds) The Cyanobacteria. pp. 163–186. Elsevier, Amsterdam (1987).

    Google Scholar 

  15. Guerrero MG, Vega JM, Losada M: The assimilatory nitrate reducing system and its regulation. Annu Rev Plant Physiol 32: 169–204 (1981).

    Google Scholar 

  16. Hannahan D: Studies on transformation of E. coli with plasmids. J Mol Biol 166: 557–580 (1983).

    Google Scholar 

  17. Jayaraman PS, Peakman TC, Busby SJW, Quicey RV, Cole JA: Location and sequence of the promoter of the gene for the NADPH-dependent nitrite reductase of Escherichia coli and its regulation by oxygen, the Fnr protein and nitrite. J Mol Biol 196: 781–788 (1987).

    Google Scholar 

  18. Johnston IL, McCabe PC, Greaves P, Gurr SJ, Cole GE, Brow MAD, Unkles SE, Clutterbuck AJ, Kinghorn JR, Innes MA: Isolation and characterization of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulas. Gene 90: 181–192 (1990).

    Google Scholar 

  19. Karplus PA, Daniels MJ, Herriot JR: Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251: 60–66 (1991).

    Google Scholar 

  20. Kinghorn JR, Campbell EI: Amino acid comparisons between bacterial, fungal and plant nitrate and nitrite reductases. In: Wray JL, Kinghorn JR (eds) Molecular and Genetic Aspects of Nitrate Assimilation. pp. 385–404. Oxford Univ. Press, Oxford (1989).

    Google Scholar 

  21. Lanhers K, Kramer V, Back E, Privalle L, Rothstein S: Molecular cloning of complementary DNA encoding maize nitrite reductase: molecular analysis and nitrate induction. Plant Physiol 88: 741–746 (1988).

    Google Scholar 

  22. Luque I, Flores E, Herrero A: Nitrite reductase gene from Synechococcus sp. PCC 7942: homology between cyanobacterial and higher plants nitrite reductases. Plant Mol Biol 21: 1201–1205 (1993).

    Google Scholar 

  23. Luque I, Herrero A, Flores E, Madueño F: Clustering of genes involved in nitrate assimilation in the cyanobacterium Synechococcus. Mol Gen Genet 232: 7–11 (1992).

    Google Scholar 

  24. Meeks JC, Walk P, Lockamm W, Schilling W, Shaffer PW, Chien WS: Pathways of assimilation of [13N], N2 and 13NH4 + by cyanobacteria with and without heterocysts. J Bacteriol 134: 125–130 (1978).

    Google Scholar 

  25. Omata T, Andriesse X, Hirano A: Identification and characterization of a gene cluster involved in nitrate transport in the cyanobacterium Synechococcus sp PCC 7942. Mol Gen Genet 236: 193–202 (1993).

    Google Scholar 

  26. Ostrowski J, Barber MJ, Rueger DC, Miller BE, Siegel LM, Kredich NM: Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. J Biol Chem 264: 15796–15808 (1989).

    Google Scholar 

  27. Paneque A, delCampo FF, Ramírez JM, Losada M: Flavin dinucleotide nitrate reductase from spinach. Biochim Biophys Acta 109: 79–85 (1965).

    Google Scholar 

  28. Peakman TC, Crouzet J, Mayaux JF, Busby S, Mohan S, Harbone N, Wootton JC, Nicholson R, Cole J: Nucleotide sequence, organization and structural analysis of the products of genes of the nirB-cysG region of the Escherichia coli K12 chromosome. J Bact 191: 315–323 (1990).

    Google Scholar 

  29. Rosenberg M, Court D: Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13: 319–353, (1979).

    Google Scholar 

  30. Sambrook J, Fristsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  31. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    Google Scholar 

  32. Serra JL, Arizmendi JM, Blanco F, Martínez-Bilbao M, Alaña A, Fresnedo O, Urkijo I, Llama MJ: Nitrate assimilation in the non-N2-fixing cyanobacterium Phormidium laminosum. In: Ullrich WR, Rigano C, Fuggi A, Aparicio PJ (eds) Inorganic Nitrogen in Plant and Microorganisms Uptake and Metabolism, pp. 196–202. Springer-Verlag, Berlin (1990).

    Google Scholar 

  33. Siegel LM, Wilkerson JO, Janick PA: Structural studies on the siroheme (4Fe-4S) cluster active centers of spinach ferredoxin nitrite reductase and Escherichia coli sulfite reductase. In: Ullrich WR, Aparicio PJ, Syrett P, Castillo F (eds) Inorganic Nitrogen Metabolism. pp. 118–122. Springer-Verlag, Berlin (1987).

    Google Scholar 

  34. Snell FD, Snell CT: In: Van Nostrand, Colorimetric Methods of Analysis, vol 2, pp. 802–807, New York (1949).

  35. Stewart V: Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev 52: 190–232 (1988).

    Google Scholar 

  36. Vaucheret H, Kronenberger J, Leplingle A, Vilaine F, Boutin JP, Caboche M: Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J 2: 559–569 (1992).

    Google Scholar 

  37. Wilkerson JO, Janick PA, Siegel LM: Electron paramagnetic resonance and optical spectroscopic evidence for interaction between siroheme and Fe4S4 prosthetic groups in spinach ferredoxin-nitrite reductase. Biochemistry 22: 5048–5054 (1983).

    Google Scholar 

  38. Zanetti G, Morelli D, Ronchi S, Negri A, Aliverti A, Curti B: Structural studies on the interaction between ferredoxin and ferredoxin-NADP+ reductase. Biochemistry 27: 3753–3759 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchán, F., Prieto, R., Kindle, K.L. et al. Isolation, sequence and expression in Escherichia coli of the nitrite reductase gene from the filamentous, thermophilic cyanobacterium Phormidium laminosum . Plant Mol Biol 27, 1037–1042 (1995). https://doi.org/10.1007/BF00037030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037030

Key words

Navigation