Skip to main content
Log in

Chlamydomonas transcripts encoding three divergent plastid chaperonins are heat-inducible

  • Short Communication
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Three cDNAs encoding plastid cpn60 chaperonin subunits have been isolated from the unicellular green alga Chlamydomonas reinhardtii. Based on comparisons of the predicted amino acid sequences, we conclude that Chlamydomonas, like higher plants, contains divergent plastid cpn60-α and cpn60-β subunits. The predicted amino acid sequences of the two Chlamydomonas cpn60-β subunits differ significantly (24% divergent), indicating that the two cpn60-β subunits have been selectively maintained for a considerable period of time. Unlike plastid chaperonin trnascripts in higher plants, heat shock conditions (42°C) lead to a rapid increase (10-to 30-fold) in the level of each of the three plastid transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Barraclough R, Ellis RJ: Protein synthesis in chloroplasts. IX Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys Acta 608: 19–31 (1980).

    Google Scholar 

  2. Cannon S, Wang P, Roy H: Inhibition of ribulose bisphosphate carboxylase assembly by antibody to a binding protein. J Cell Biol 103: 1327–1335 (1986).

    Google Scholar 

  3. Cheng MY, Hartl F-U, Martin J, Pollock RA, Kalousek F, Neupert W, Hallberg E, Hallberg RL, Horwich AL: Mitochondrial heat shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337: 620–625 (1989).

    Google Scholar 

  4. Cloney LP, Bekkaoui DR, Feist GL, Lane WS, Hemmingsen SM: Brassica napus plastid and mitochondrial chaperonin-60 proteins contain multiple distinct polypeptides. Plant Physiol 105: 233–241 (1994).

    Google Scholar 

  5. Fayet O, Ziegelhoffer T, Georgopoulos C: The gro ES and gro EL heat shock genes of Escherichia coli are essential for bacterial growth at all temperatures. J Bact 171: 1379–1385 (1989).

    Google Scholar 

  6. Goldschmidt-Clermont M, Rahire M: Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol 191: 421–432 (1989).

    Google Scholar 

  7. Gromoff EDV, Treier U, Beck CF: Three light-inducible heat shock genes of Chlamydomonas reinhardtii. Mol Cell Biol 9: 3911–3918 (1989).

    Google Scholar 

  8. Harris EH: The Chlamydomonas Sourcebook. Academic Press, San Diego, CA (1989).

    Google Scholar 

  9. Hemmingsen SM, Woolford C, van derVies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ: Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334 (1988).

    Google Scholar 

  10. Hendrick JP, Hartl F-U: Molecular chaperone functins of heat-shock proteins. Annu Rev Biochem 62: 349–384 (1993).

    Google Scholar 

  11. Johnson RB, Fearon K, Mason T, Jindal S: Cloning and characterization of the yeast chaperonin hsp60 gene. Gene 84: 295–302 (1989).

    Google Scholar 

  12. Lubben TH, Donaldson GK, Viitanen PV, Gatenby AA: Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. Plant Cell 1: 1223–1230 (1989).

    Google Scholar 

  13. Martel R, Cloney LP, Pelcher LE, Hemmingsen SM: Unique composition of plastid chaperonin-60: alpha and beta polypeptide-encoding genes are highly divergent. Gene 94: 181–187 (1990).

    Google Scholar 

  14. McMullin TW, Hallberg RL: A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol Cell Biol 8: 371–380 (1989).

    Google Scholar 

  15. Musgrove JE, Johnson RA, Ellis RJ: Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits. Eur J Biochem 163: 529–534 (1987).

    Google Scholar 

  16. Neidhardt FC, Phillips TA, VanBogelen RA, Smith MW, Georgalis Y, Subramanian AR: Identity of the B56.5 protein, the A-protein, and the groE gene product of Escherichia coli. J Bact 145: 513–520 (1981).

    Google Scholar 

  17. Prasad TK, Stewart CR: cDNA clones encoding Arabidopsis thaliana and Zea mays mitochondrial chaperonin HSP60 and gene expression during seed germination and heat shock. Plant Mol Biol 18: 873–885 (1992).

    Google Scholar 

  18. Reading DS, Hallberg RL, Myers AM: Characterization of the yeast hsp 60 gene coding for a mitochondrial assembly factor. Nature 337: 655–659 (1989).

    Google Scholar 

  19. Schloss JA, Silflow CD, Rosenbaum JL: mRNA abundance changes during flagellar regeneration in Chlamydomonas reinhardtii. Mol Cell Biol 4: 424–434 (1984).

    Google Scholar 

  20. Tsugeki R, Mori H, Nishimura M: Purification, cDNA cloning and northern-blot analysis of mitochondrial chaperonin 60 from pumpkin cotyledons. Eur J Biochem 209: 453–458 (1992).

    Google Scholar 

  21. Venner TJ, Gupta RS: Nucleotide sequence of rat hsp60 (chaperonin, groEL homolog) cDNA. Nucl Acids Res 18: 5309 (1990).

    Google Scholar 

  22. Viale AM, Arakaki AK: The chaperone connection to the origins of the eukaryotic organelles. FEBS Lett 341: 146–151 (1994).

    Google Scholar 

  23. Vierlign E: The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42: 579–620 (1991).

    Google Scholar 

  24. Welch WJ: The role of heat-shock proteins as molecular chaperones. Curr Opin Cell Biol 3: 1033–1038 (1991).

    Google Scholar 

  25. Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H: Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acid Sci USA 86: 6201–6205 (1989).

    Google Scholar 

  26. Zabaleta E, Oropeza A, Jimenez B, Salerno G, Crespi M, Herrera-Estrella I: Isolation and characterization of genes encoding chaperonin 60β from Arabidopsis thaliana. Gene 111: 175–181 (1992).

    Google Scholar 

  27. Zabaleta E, Assad N, Oropeza A, Salerno G, Herrera-Estrella L: Expression of one of the members of the Arabidopsis chaperonin 60β gene family is developmentally regulated and wound-repressible. Plant Mol Biol 24: 195–202 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, M.D., Paavola, C.D., Lenvik, T.R. et al. Chlamydomonas transcripts encoding three divergent plastid chaperonins are heat-inducible. Plant Mol Biol 27, 1031–1035 (1995). https://doi.org/10.1007/BF00037029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037029

Key words

Navigation