Skip to main content
Log in

The maize transposable element Ac is mobile in the legume Lotus japonicus

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To evaluate the prospects for transposon mutagenesis in the autogamous diploid legume Lotus japonicus, the behaviour of the maize transposable element Ac was analysed in the progeny of 38 independent transgenic plants. The conditions for monitoring donor site excision using histochemical localization of β-glucuronidase activity or the alternative spectinomycin resistance assay were established, and used to follow Ac mobility through two generations. Somatic excision was monitored as variegated cotyledons in the T2 generation and germinal excision events were scored in segregating T3 families as complete β-glucuronidase-mediated staining of cotyledons or as a fully green spectinomycin-resistant phenotype. Using these assays an average germinal excision frequency of 12% was estimated in the T3 offspring from variegated plants. The fidelity of the excision assays was ascertained by comparing the frequency of germinal excision to the frequency of Ac reinsertion at new positions of the genome. Transposition of Ac in 42% of the plants and detection of the characteristic Ac insertion/excision footprints suggests that insertion mutagenesis with the autonomous maize Activator element is feasible in Lotus japonicus. Parameters influencing Ac behaviour, such as dosage, position effects and modification of the element itself, were also investigated comparing homozygous and hemizygous plants from the same family and by analysing different transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

W:

white

V:

variegated

FG:

fully green

FB:

fully blue

aadA :

spectinomycin adenyltransferase

References

  1. Aarts MGM, Dirkse WG, Stiekema WJ, Pereira A: Transposon tagging of a male sterility gene in Arabidopsis. Nature 363: 715–717 (1993).

    Google Scholar 

  2. Baker B, Coupland G, Fedoroff N, Starlinger P, Schell J: Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J 6: 1547–1554 (1987).

    Google Scholar 

  3. Bancroft I, Bhatt AM, Sjodin C, Scofield S, Jones JDG, Dean C: Development of an efficient two-element transposon taggmg system in Arabidopsis thaliana. Mol Gen Genet 233: 449–461 (1992).

    Google Scholar 

  4. Bancroft I, Jones JDG, Dean C: Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell 5: 631–638 (1993).

    Google Scholar 

  5. Caetano-Anollés G, Gresshoff PM: Plant genetic control of nodulation. Annu Rev Microbiol 45: 345–382 (1991).

    Google Scholar 

  6. Cardon GH, Frey M, Saedler H, Gierl A: Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J 3: 773–784 (1993).

    Google Scholar 

  7. Chuck G, Robbins T, Nijjar C, Ralston E, Courtney-Gutterson N, Dooner HK: Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5: 371–378 (1993).

    Google Scholar 

  8. Coen ES, Meyerowitz EM: The war of the whorls: genetic interactions controlling flower development. Nature 353: 31–37 (1991).

    Google Scholar 

  9. Coupland G, Baker B, Schell J, Starlinger P: Characterization of the maize transposable element Ac by internal deletions. EMBO J 7: 3653–3659 (1988).

    Google Scholar 

  10. Coupland G, Plum C, Chatterjee S, Post A, Starlinger P: Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc Natl Acad Sci USA 86: 9385–9388 (1989).

    Google Scholar 

  11. Dean C, Sjodin C, Bancroft I, Lawson E, Lister C, Scofield S, Jones J: Development of an efficient transposon tagging system in Arabidopsis thaliana. Symposia of the Society for Experimental Biology XLV: 63–75 (1991).

    Google Scholar 

  12. Dean C, Sjodin C, Page T, Jones J, Lister C: Behaviour of the maize transposable element Ac in Arabidopsis thaliana. Plant J 2: 69–81 (1992).

    Google Scholar 

  13. Döring H-P, Starlinger P: Molecular genetics of transposable elements in plants. Annu Rev Genet 20: 175–200 (1986).

    Google Scholar 

  14. Earp DJ, Lowe B, Baker B: Amplification of genomic sequences flanking transposable elements in host and heterologous plants: a tool for transposon tagging and genome characterization. Nucl Acids Res 18: 3271–3279 (1990).

    Google Scholar 

  15. Ellis JG, Finnegan EJ, Lawrence GJ: Developing a transposon tagging system to isolate rust-resistance genes from flax. Theor Appl Genet 85: 46–54 (1992).

    Google Scholar 

  16. English JJ, Harrison KA, Jones JDG: Agenetic analysis of DNA sequence requirements for Dissociation state I activity in tobacco. Plant Cell 5: 501–514 (1993).

    Google Scholar 

  17. Fedoroff NV, Wessler S, Shure M: Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 243–251 (1983).

    Google Scholar 

  18. Fedoroff NV: Maize transposable elements. In: Howe M, Berg D (eds) Mobile DNA, pp. 375–411. ASM Press, Washington, DC (1989).

    Google Scholar 

  19. Fedoroff NV, Smith DL: A versatile system for detecting transposition in Arabidopsis. Plant J 3: 273–289 (1993).

    Google Scholar 

  20. Franssen HJ, Vijn I, Yang WC, Bisseling T: Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol Biol 19: 89–107 (1992).

    Google Scholar 

  21. Handberg K, Stougaard J: Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2: 487–496 (1992).

    Google Scholar 

  22. Handberg K, Stiller J, Thykjaer T, Stougaard J: Transgenic plants: Agrobacterium mediated transformation of the diploid legume Lotus japonicus. In: Celis JE (ed) Cell Biology: A Laboratory Handbook, Academic Press, New York (1994).

    Google Scholar 

  23. Jefferson RA: Assaying chimeric genes in plants: the GUS fusion system. Plant Mol Biol Rep 5: 387–405 (1987).

    Google Scholar 

  24. Jones JDG, Carland FM, Maliga P, Dooner HK: Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science 244: 204–207 (1989).

    Google Scholar 

  25. Jones JDG, Carland F, Lim E, Ralston E, Dooner HK: Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701–707 (1990).

    Google Scholar 

  26. Jones JDG, Harper L, Carland F, Ralston E, Dooner HK: Reversion and altered variegation of an SPT:Ac allele in tobacco. Maydica 36: 329–335 (1991).

    Google Scholar 

  27. Jones JDG, Shlumukov L, Carland F, English J, Scofield SR, Bishop GJ, Harrison K: Effective vectors for transformation, expression of heterologous genes, and assaying transposition excision in transgenic plants. Transgenic Res 1: 285–297 (1992).

    Google Scholar 

  28. Kunze R, Starlinger P: The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J 8: 3177–3185 (1989).

    Google Scholar 

  29. Pohlmann RF, Fedoroff NV, Messing J: The nucleotide sequence of the maize controlling element Activator. Cell 37: 635–643 (1984).

    Google Scholar 

  30. Saedler H, Nevers P: Transposition in plants: a molecular model. EMBO J 4: 585–590 (1985).

    Google Scholar 

  31. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  32. Scofield SR, English JJ, Jones JGD: High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Plant Cell 5: 507–517 (1993).

    Google Scholar 

  33. Scofield SR, Jones DA, Harrison K, Jones JDG: Chloroplast targeting of spectinomycin adenyltransferase provides a cell autonomous marker for monitoring transposon excision in tomato and tobacco. Mol Gen Genet 244: 189–196 (1994).

    Google Scholar 

  34. Stougaard J: Substrate-dependent negative selection in plants using a bacterial cytosine deaminase gene. Plant J 3: 755–761 (1993).

    Google Scholar 

  35. VanSluys MA, Tempé J, Fedoroff N: Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J 6: 3881–3889 (1987).

    Google Scholar 

  36. Yang C-H, Ellis JG, Michelmore RW: Infrequent transposition of Ac in lettuce, Lectuca sativa. Plant Mol Biol 22: 793–805 (1993).

    Google Scholar 

  37. Yoder JI, Palys J, Alpert K, Lassner M: Ac transposition in transgenic tomato plants. Mol Gen Genet 213: 291–296 (1988).

    Google Scholar 

  38. Zhou J H, Atherly AG: In situ detection of transposition of the maize controlling element (Ac) in transgenic soybean tissues. Plant Cell Rep 8: 542–545 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thykjaer, T., Stiller, J., Handberg, K. et al. The maize transposable element Ac is mobile in the legume Lotus japonicus . Plant Mol Biol 27, 981–993 (1995). https://doi.org/10.1007/BF00037025

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037025

Key words

Navigation