Skip to main content

Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis

Abstract

Fracture toughness of re-entrant foam materials with a negative Poisson's ratio is explored experimentally as a function of permanent volumetric compression ratio, a processing variable. J IC values of toughness of negative Poisson's ratio open cell copper foams are enhanced by 80 percent, 130 percent, and 160 percent for permanent volumetric compression ratio values of 2.0, 2.5, and 3.0, respectively, compared to the J IC value of the conventional foam (with a positive Poisson's ratio). Analytical study based on idealized polyhedral cell structures, approximating the shape of the conventional and re-entrant cells, disclose for re-entrant foam, toughness increasing as Poisson's ratio becomes more negative. The increase in toughness is accompanied by an increase in compliance, a combination not seen in conventional foam, and which may be useful in some applications such as sponges.

This is a preview of subscription content, access via your institution.

References

  1. M.F. Ashby, Metallurgical Transactions A 14A (1983) 1755–1769.

    Google Scholar 

  2. J.S. Morgan, J.L. Wood and R.C. Bradt, Materials Science and Engineering 47 (1981) 37–42.

    Google Scholar 

  3. D.J. Green and R.G. Hoagland, Journal of American Ceramic Society 68 (1985) 395–398.

    Google Scholar 

  4. C.W. Fowlkes, International Journal of Fracture 10 (1974) 99–108.

    Google Scholar 

  5. P.H. Thornton and C.L. Magee, Metallurgical Transactions A 6A (1975) 1801–1807.

    Google Scholar 

  6. R.S. Lakes, Science 235 (1987) 1038–1040.

    Google Scholar 

  7. R.S. Lakes, Science 238 (1987) 551.

    Google Scholar 

  8. E.A. Friis, R.S. Lakes and J.B. Park, Journal of Materials Science 23 (1988) 4406–4414.

    Google Scholar 

  9. J.B. Choi and R.S. Lakes, Journal of Materials Science 27 (1992) 4678–4684.

    Google Scholar 

  10. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, NY (1982).

    Google Scholar 

  11. R.E. Perterson, Stress Concentration Factors, John Wiley, NY (1974).

    Google Scholar 

  12. I.N. Sneddon, Fourier Transforms, McGraw-Hill, NY (1951).

    Google Scholar 

  13. L.J. Gibson and M.F. Ashby, Cellular Solids, Pergamon, Oxford, (1988).

    Google Scholar 

  14. A. McIntyre and G.E. Anderton, Polymer 20 (1979) 247–253.

    Google Scholar 

  15. D.J. Green, Fabrication and Mechanical Properties of Lightweight Ceramics Produced by Sintering of Hollow Spheres. Final Report on AFOSR contract No. F49620-83-C0078 (1984).

  16. D.J. Green, Journal of American Ceramic Society 66 (1983) 288–292.

    Google Scholar 

  17. K. Maiti, M.F. Ashby and L.J. Gibson, Scripta Metallurgica 18 (1984) 213–217.

    Google Scholar 

  18. D.J. Green, Journal of American Ceramic Society 68 (1985) 403–409.

    Google Scholar 

  19. R. Brezny, D.J. Green and C.Q. Dam, Journal of American Ceramic Society 72 (1989) 885–889.

    Google Scholar 

  20. J.S. Huang and L.J. Gibson, Acta Metallurgica et Materialia 39 (1991) 1617–1626.

    Google Scholar 

  21. J.S. Huang and L.J. Gibson, Acta Metallurgica et Materialia 39 (1991) 1627–1636.

    Google Scholar 

  22. R. Brezny and D.J. Green, Acta Metallurgica et Materialia 38 (1990) 2517–2526.

    Google Scholar 

  23. J.B. Choi and R.S. Lakes, Journal of Materials Science 27 (1992) 5375–5381.

    Google Scholar 

  24. ASTM, Annual Book of ASTM Standards, Designation: E813-87 and E1152-87, Philadelphia, PA (1986).

  25. H.I. Ewalds and R.J.H. Wanhill, in Fracture Mechanics 1986, Edward Arnold, NY (1986) 33.

    Google Scholar 

  26. J.B. Choi and R.S. Lakes, Journal of Composite Materials 29 (1995) 113–128.

    Google Scholar 

  27. R.S. Lakes, S. Nakamura, J.C. Behiri and W. Bonfield, Journal of Biomechanics, 23 (1990) 967–975.

    Google Scholar 

  28. M.F. Ashby, Acta Metallurgica 37 (1989) 1273–1293.

    Google Scholar 

  29. B.D. Caddock, and K.E. Evans, Journal of Physics D., Applied Physics 22 (1989) 1877–1882.

    Google Scholar 

  30. K.L. Alderson, and K.E. Evans, Polymer 33 (1992) 4435–4438.

    Google Scholar 

  31. A.Y. Haeri, D.J. Weidner and J.B. Parise, Science 257 (1992) 650–652.

    Google Scholar 

  32. R.S. Lakes, Advanced Materials (Weinheim, Germany), 5 (1993) 293–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, J.B., Lakes, R.S. Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis. Int J Fract 80, 73–83 (1996). https://doi.org/10.1007/BF00036481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036481

Keywords

  • Copper
  • Foam
  • Mechanical Engineer
  • Sponge
  • Civil Engineer