Effects of the diatom-Emiliana huxleyi succession on photosynthesis, calcification and carbon metabolism by size-fractioned phytoplankton

Abstract

Changes in the species composition, photosynthesis, calcification and size-fractionated carbon metabolism by natural phytoplankton assemblages were monitored in three mesocosms under different nutrient conditions during May 1993. In the 3 enclosures, the decline of the diatom-dominated assemblages was followed by the development of a bloom of the coccolithoporid Emiliania huxleyi. Highest growth of E. huxleyi was observed in the mesocosm with a high N : P ratio, suggesting this species is a good competitor at low phosphate concentrations. The transition from diatom- to E. huxleyi-dominated assemblages brought about a sharp reduction of the phytoplankton standing stock and carbon-specific photosynthetic rate. The relative contribution of the smaller size fraction to total photosynthesis increased as the succession progressed. Calcification rate and E. huxleyi cell-specified calcite production were highest during the early stages of development of the E. huxleyi bloom. Distinct changes in the patterns of 14C allocation into biomolecules were noticed during the diatom-E. huxleyi succession. The diatom-dominated assemblage showed high relative 14C incorporation into low molecular weight metabolites (LMWM), whereas proteins and, specially, lipids accounted for the largest proportion of carbon incorporation in the E. huxleyi bloom. The patterns of photoassimilated carbon metabolism proved to be strongly dependent on cellular size, as protein relative synthesis was significantly higher in the smaller than in the larger size fraction, irrespective of the nutrient regime and the successional stage. These results are discussed in relation to the ecological and physiological features of small phytoplankton.

This is a preview of subscription content, access via your institution.

References

  1. Aksnes, D. L. & j. K. Egge, 1991. A Theoretical model for nutrient uptake in phytoplankton. Mar. Ecol. Prog. Ser. 70: 65–72.

    Google Scholar 

  2. Balch, W. M., P. M. Holligan, S. G. Ackleson & K. J. Voss, 1991. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnol. Oceanogr. 36: 629–643.

    Google Scholar 

  3. Balch, W. M., P. M. Holligan & K. A. Kilpatrick, 1992. Calcification, photosynthesis and growth of the bloom forming coccolithophore, Emiliania huxleyi. Cont. Shelf. Res. 12: 1353–1374.

    Google Scholar 

  4. Barlow, R. G., 1984. Physical responses of the phytoplankton to turbulent and stable environments in an upwelling region. J. Plankton Res. 6: 385–397.

    Google Scholar 

  5. Braarud, T., B. F. Hofsvang, P. Hjelmfoss & A.-K. Överland, 1974. The natural history of the Hardangerfjord. 10. The phytoplankton in 1955–56. The quantitative phytoplankton cycle in the fjord waters and in the offshore coastal waters. Sarsia 55: 63–98.

    Google Scholar 

  6. Bratbak, G., J. K. Egge & M. Heldal, 1993. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93: 39–48.

    Google Scholar 

  7. Chan, A. T., 1980. Comparatice physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. II. Relationship between photosynthesis, growth and carbon/chlorophyll a ratio. J. Phycol. 16: 428–432.

    Google Scholar 

  8. Chisholm, s. W., 1992. Phytoplankton size. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 213–237.

    Google Scholar 

  9. Di Tullio, G. R. & E. A. Laws, 1983. Estimates of phytoplankton N uptake based on 14CO2 incorporation into protein. Limnol. Oceanogr. 28: 177–185.

    Google Scholar 

  10. Egge, J. K., 1993. Nutrient control of phytoplankton growth: Effects of macronutrient composition (N, P, Si) on species succession. Ph. D. thesis, University of Bergen, Norway, 104 pp.

    Google Scholar 

  11. Egge, J. K. & D. L. Aksnes, 1992. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser. 83: 281–289.

    Google Scholar 

  12. Fernández, E., W. M. Balch, E. Marañón & P. M. Holligan, 1994. High rates of lipid biosynthesis in cultured, mesocosm and coastal populations of the coccolithophore Emiliania huxleyi. Mar. Ecol. Prog. Ser. 114: 13–22.

    Google Scholar 

  13. Fernández, E., P. Boyd, P. M. Holligan & D. S. Harbour, 1993. Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean. Mar. Ecol. Prog. Ser. 97: 271–285.

    Google Scholar 

  14. Fernández, E., E. Marañón, D. S. Harbour, S. Kristiansen & B. R. Heimdal, 1995. Patterns of carbon and nitrogen uptake during blooms of Emiliania huxleyi in two norwegian fjords. J. Plankton Res., in press.

  15. Fernández, E., P. Serret, I. de Madariaga, D. S. Harbour & A. G. Davies, 1992. Photosynthetic carbon metabolism and biochemical composition of phytoplankton assemblages enclosed in microcosms: the diatom-Phaeocytis sp. succession. Mar. Ecol. Prog. Ser. 90: 89–102.

    Google Scholar 

  16. Fraga, F. & F. F. Pérez, 1990. Transformaciones entre composición química del fitoplancton, composición elemental y relación de Redfield. Scient. Mar. 54: 69–76.

    Google Scholar 

  17. Furnas, M. J., 1990. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plankton Res. 12: 1117–1151.

    Google Scholar 

  18. Grasshoff, K., M. Ehrhardt & M. Kremling (eds), 1983. Methods of seawater analysis. 2nd edn. Verlag Chemie, Weinheim, 419 pp.

    Google Scholar 

  19. Holligan, P. M., E. Fernández, J. Aiken, W. M. Balch, P. Boyd, P. H. Burkill, M. Finch, S. B. Groom, G. Malin, K. Muller, D. A. Purdie, C. Robinson, C. C. Trees, S. M. Turner & P. van der Wal, 1993. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem. Cycles 7: 879–900.

    Google Scholar 

  20. Holligan, P. M., R. P. Harris, R. C. Newell, D. S. Harbour, E. A. S. Linley, M. I. Lucas, P. R. G. Tranter & C. M. Weekley, 1984. Vertical distribution and partitioning of organic carbon in mixed, frontal and stratified waters of the English Channel. Mar. Ecol. Prog. Ser. 14: 111–127.

    Google Scholar 

  21. Holligan, P. M., M. Viollier, D. S. Harbour, P. Campus & M. Champagne-Phillippe, 1993. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304: 339–342.

    Google Scholar 

  22. Howard, K. M. & I. R. Joint. Physiological ecology of picoplankton in the North Sea. Mar. Biol. 102: 275–281.

  23. Joint, I. R., N. J. P. Owens & A. J. Pomroy, 1986. Seasonal production of photosynthetic picoplankton and nanoplankton in the Celtic Sea. Mar. Ecol. Prog. Ser. 28: 251–258.

    Google Scholar 

  24. Joint, I. R., A. Pomroy, G. Savidge & P. Boyd, 1993. Size-fractionated primary productivity in the northeast Atlantic in May–July 1989. Deep Sea Res. II, 40: 423–440.

    Google Scholar 

  25. Jones, T. W., T. C. Malone & S. Pike, 1990. Seasonal contrasts in diurnal carbon incorporation by phytoplankton size classes of the coastal plume of Chesapeake Bay. Mar. Ecol. Prog. Ser. 68: 129–136.

    Google Scholar 

  26. Kristiansen, S., T. F. Thingstad, P. van der Wal, T. Farbrot & F. Skjoldal, 1994. An Emiliania huxleyi dominated blood beneath the brackish layer o fthe Samnagerfjord, western Norway. Importance of hydrography and nutrients. Sarsia 79: 357–368.

    Google Scholar 

  27. Laws, E. A., 1975. The importance of respiration losses in controlling the size distribution of marine phytoplankton. Ecology 56: 419–426.

    Google Scholar 

  28. Laws, E. A., 1991. Photosynthetic quotients, new productions and net community production in the open ocean. Deep Sea Res. 38: 143–167.

    Google Scholar 

  29. Li, W. K. W. & W. G. Harrison, 1982. Carbon flow into the end-products of photosynthesis in short and long incubations of a natural phytoplankton population. Mar. Biol. 72: 175–182.

    Google Scholar 

  30. Madariaga, I. de & E. Fernández, 1990. Photosynthetic carbon metabolism of size-fractionated phytoplankton during an experimental bloom in marine microcosms. J. mar. biol. Ass. U.K. 70: 531–543.

    Google Scholar 

  31. Madariaga, I. de & I. R. Joint, 1994. Photosynthesis and carbon metabolism by size-fractionated phytoplankton in the southern North Sea in early summer. Cont. Shelf Res. 14: 295–311.

    Google Scholar 

  32. Malin, G., S. Turner, P. Liss, P. M. Holligan & D. S. Harbour, 1993. Dimethyl sulphide and dimethylsulphoniopropionate in the north eash Atlantic during the summer coccolithophore bloom. Deep Sea Res. 40: 1487–1508.

    Google Scholar 

  33. Malone, T. C., 1980. Algal size. In Morris, I. (ed.), The Physological Ecology of Phytoplankton. Blackwell Scientific Publications, Oxford: 433–463.

    Google Scholar 

  34. Marañón, E., E. Fernández & R. Anadón, 1995. Patterns of macromolecular synthesis by natural phytoplankton assemblages under changing upwelling regimes: in situ observations and microcosms experiments. J. exp. mar. Biol. Ecol 188: 1–28.

    Google Scholar 

  35. Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493–509.

    Google Scholar 

  36. Morris, I., 1981. Photosynthetic products, physiological state and phytoplankton growth. Can. Bull. Fish. Aquat. Sci 210: 83–102.

    Google Scholar 

  37. Morris, I. & W. Skea, 1978. Products of photosynthesis in natural populations of marine phytoplankton from the Gulf of Maine. Mar. Biol. 47: 303–312.

    Google Scholar 

  38. Morris, R. J., M. J. McCartney & G. A. Robinson, 1983. Studies of a spring phytoplankton bloom in an enclosed experimental ecosystem. I. Biochemical changes in relation to the nutrient chemistry of water. J. exp. mar. Biol. Ecol. 70: 249–262.

    Google Scholar 

  39. Paasche, E., 1963. The adaptation of the carbon-14 method for the measurement of coccolith production in Coccolithus huxleyi. Physiol. Plant. Suppl. III: 1–82.

    Google Scholar 

  40. Potvin, C., M. J. Lechowicz & S. Tardif, 1990. The statistical analysis of ecophysical response curves obtained from experiments involving repeated measures. Ecology 71: 1389–1400.

    Google Scholar 

  41. Riegman, R., B. R. Kuipers, A. A. M. Noordeloos & H. J. Witte, 1993. Size-differential control of phytoplankton and the structure of plankton communities. Neth. J. Sea Res. 31: 255–265.

    Google Scholar 

  42. Riegman, R., A. A. M. Noordeloos & G. C. Cadée, 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar. Biol. 112: 479–484.

    Google Scholar 

  43. Robertson, J. E., C. Robinson, D. R. Turner, P. M. Holligan, A. Watson, P. Boyd, E. Fernández & M. Finch, 1994. The impact of a coccolithophore bloom on oceanic carbon uptake in the N. E. Atlantic during summer 1991. Deep Sea Res. 41: 297–314.

    Google Scholar 

  44. Smayda, T. J., 1980. Phytoplankton species succession. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell Scientific Publications, Oxford: 493–570.

    Google Scholar 

  45. Taguchi, S. & E. A. Laws, 1987. Patterns and causes of temporal variability in the physiological condition of the phytoplankton community in Kaneohe Bay, Hawaii. J. Plankton Res. 9: 1143–1157.

    Google Scholar 

  46. Westbroek, P., C. W. Brown, J. van Bleijswijk, C. Brownlee, J. G. Brummer, M. Conte, J. Egge, E. Fernández, R. Jordan, M. Knappertbuch, J. Stefels, M. Veldhuis, P. van der Wal & J. Young, 1993. A model system approach to biological climate forcing. The example of Emiliani huxleyi. Global Planet. Change 8: 27–46.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

marañón, E., Fernández, E., Harris, R.P. et al. Effects of the diatom-Emiliana huxleyi succession on photosynthesis, calcification and carbon metabolism by size-fractioned phytoplankton. Hydrobiologia 317, 189–199 (1996). https://doi.org/10.1007/BF00036469

Download citation

Key words

  • calcification
  • carbon metabolism
  • diatom
  • Emiliania huxleyi
  • size