Skip to main content
Log in

A long-term perspective of dissolved organic carbon transport in Sycamore Creek, Arizona, USA

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dissolved organic carbon (DOC) dynamics were examined over five years (1989–1993) in Sycamore Creek, a Sonoran Desert stream, specifically focusing on DOC concentration in surface and hyporheic waters, and rates of export. In 1989 and 1990, the years of lowest stream discharge (0.08 and 0.04 m3 s−1 annual mean of daily discharge, respectively), DOC was high, averaging 7.37 and 6.22 mgC l−1 (weighted annual means). In contrast, from 1991 through 1993, a period of increased flow (1.1, 1.2 and 4.3 m3 s−1), concentration was significantly lower (P<0.001) with annual mean concentrations of 3.54, 3.49 and 3.39 mgC l−1. Concentration exhibited little spatial variation between two sampling stations located 6 km apart along the mainstem or between surface and hyporheic waters. Annual export of DOC from Sycamore Creek varied 100-fold over the five-year period from a mean rate of only 24 kgC d−1 in 1990 to 2100 kgC d−1 in 1993. Ninety percent of DOC was exported by flows greater than 2.8 m3 s−1, and 50% during flows greater than 27 m3 s−1; flows of 2.8 and 24 m3 s−1 occurred only 9 and 1% of the time. The export of organic matter in Sycamore Creek appears to be coupled to El Niño-Southern Oscillation phenomena. The years of highest export, 1991–1993, had El Niño conditions while 1989 and 1990 had medial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Busch, D. E. & S. G. Fisher, 1981. Metabolism of a desert stream. Freshwat. Biol. 11: 301–307.

    Google Scholar 

  • Climate Diagnostic Bulletin, 1994. Near real-time analyses ocean/atmosphere. U.S. Department of Commerce. (Available from: Climate Diagnostics Center, W/NMC52, Attn: Climate Diagnostics Bulletin, NOAAJNWS/NMC, Room 605, World Weather Building, Washington, D.C. 20233.).

  • Crawford, C. S. & J. R. Gosz, 1982. Desert ecosystems: their resources in space and time. Envir. Conserv. 9: 181–195.

    Google Scholar 

  • Fiebig, D. M., M. A. Lock & C. Neal, 1990. Soil water in the riparian zone as a source of carbon for a headwater stream. J. Hydrol. 116: 217–237.

    Google Scholar 

  • Fisher, S. G., 1986. Structure and dynamics of desert streams. In W. Whitford (ed.), Pattern and Process in Desert Ecosystems. University of New Mexico Press, Albuquerque: 114–139.

    Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.

    Google Scholar 

  • Fisher, S. G. & W. L. Minckley, 1978. Chemical characteristics of a desert stream in flash flood. J. Arid Envir. 1: 25–33.

    Google Scholar 

  • Fisher, S. G., L. J. Gray, N. B. Grimm & D. E. Busch, 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr. 52: 92–110.

    Google Scholar 

  • Ford, T. E. & R. J. Naiman, 1989. Groundwater-surface water relationships in boreal forest watersheds: dissolved organic carbon and inorganic nutrient dynamics. J. Fish. aquat. Sci. 46: 41–49.

    Google Scholar 

  • Grimm, N. B., 1987. Nitrogen dynamics during succession in a desert stream. Ecology 68: 1157–1170.

    Google Scholar 

  • Grimm, N. B., 1992. Implications of climate change for stream communities. In P. M. Kareiva, J. G. Kingsolver & R. B. Huey (eds), Biotic Interactions and Global Change. Sinauer Assoc., Sunderland, Massachusetts: 293–314.

    Google Scholar 

  • Hedman, E. R. & W. R. Osterkamp, 1982. Streamflow characteristics related to channel geometry of streams in western United States. U.S. Geol. Surv. Water-Sup. Pap. 2193.

  • Hynes, H. B. N, 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.

    Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1983. Microbial heterotrophic utilization of dissolved organic matter in a piedmont stream. Freshwat. Biol. 13: 363–377.

    Google Scholar 

  • Kaplan, L. A., R. A. Larson & T. L. Bott, 1980. Patterns of dissolved organic carbon in transport. Limnol. Oceanogr. 25: 1034–1043.

    Google Scholar 

  • Lush, D. L. & H. B. N. Hynes, 1978. The uptake of dissolved organic matter by a small spring stream. Hydrobiologia 60: 271–275.

    Google Scholar 

  • Mcdowell, W. H. & S. G. Fisher, 1976. Autumnal processing of dissolved organic matter in a small woodland stream ecosystem. Ecology 57: 561–569.

    Google Scholar 

  • McDowell, W. H. & G. E. Likens, 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook valley. Ecol. Monogr. 58: 177–195.

    Google Scholar 

  • McKnight, D., E. M. Thurman, R. L. Wershaw & H. Hemond, 1985. Biogeochemistry of aquatic humic substances in Thoreau's Bog, Concord, Massachusetts. Ecology 66: 1339–1352.

    Google Scholar 

  • Meybeck, M, 1982. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282: 401–450.

    Google Scholar 

  • Moeller, J. R., G. W. Minshall, K. W. Cummins, R. C. Petersen, C. E. Cushing, J. R. Sedell, R. A. Larson & R. L. Vannote, 1979. Transport of dissolved organic carbon in streams of differing physiographic characteristics. Org. Geochem. 1: 139–150.

    Google Scholar 

  • Molles, M. C., Jr. & C. N. Dahm, 1990. A perspective on El Niño and La Niña: global implications for stream ecology. J. N. Am. Benth. Soc. 9: 68–76.

    Google Scholar 

  • Mulholland, P.J. & E.J. Kuenzler, 1979. Organic carbon export from upland and forested wetland watersheds. Limnol. Oceanogr. 24: 960–966.

    Google Scholar 

  • Mulholland, P. J. & J. A. Watts, 1982. Transport of organic carbon to the oceans by rivers of North America: a synthesis of existing data. Tellus 34: 176–186.

    Google Scholar 

  • Mulholland, P. J., C. N. Dahm, M. B. David, D. M. Di Toro, T. R. Fisher, H. F. Hemond, I. Kögel-Knabner, M. H. Meybeck, J. L. Meyer & J. R. Sedell, 1990. What are the temporal and spatial variations or organic acids at the ecosystem level? In E. M. Perdue & E. T. Gjessing (eds), Organic Acids in Aquatic Ecosystems. Wiley and Sons. New York: 315–329.

    Google Scholar 

  • Poff, N. L. & J. V. Ward, 1989. Implicatonns of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Can. J. Fish. aquat. Sci. 46: 1805–1818.

    Google Scholar 

  • Rutherford, J. E. & H. B. N. Hynes, 1987. Dissolved organic carbon in streams and groundwater. Hydrobiologia 154: 33–48.

    Google Scholar 

  • Schlesinger, W. H. & J. M. Melack, 1981. Transport of organic carbon in the world's rivers. Tellus 33: 172–187.

    Google Scholar 

  • Sedell, J. R. & C. N. Dahm, 1990. Spatial and temporal scales of dissolved organic carbon in streams and rivers. In E. M. Perdue & E. T. Gjessing (eds), Organic Acids in Aquatic Ecosystems, Wiley and Sons, New York: 261–279.

    Google Scholar 

  • Stanley, E. H, 1993. Drying disturbance and stability in a desert stream ecosystem. Ph.D. dissertation. Ariz. St. Univ., Tempre, Arizona.

    Google Scholar 

  • Thomsen, B. W. & H. H. Schumann, 1968. Water resources of the Sycamore Creek watershed, Maricopa County, Arizona. U.S. Geol. Surv. Water-Sup Pap. 1861.

  • United States Geological Survey, 1989–1993. Water resources data for Arizona. U.S. Geol. Surv. Water — Data Rep., Arizona.

  • Valett, H. M., S. G. Fisher &E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. J. N. Am. Benth. Soc. 9: 201–215.

    Google Scholar 

  • Wallis, P. M., H. B. N. Hynes & S. A. Telang, 1981. The importance of groundwater in the transportation of allochthonous dissolved organic matter to the stream draining a small mountain basin. Hydrobiologia 79: 77–90.

    Google Scholar 

  • Whittaker, R. H, 1975. Communities and ecosystems. Second edition. MacmillanLondon, 385 pp.

    Google Scholar 

  • Wilkinson, L, 1990. SYSTAT: the system for statistics. SYSTAT, Inc., Evanston, Illinois, 677 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, J.B., Fisher, S.G. & Grimm, N.B. A long-term perspective of dissolved organic carbon transport in Sycamore Creek, Arizona, USA. Hydrobiologia 317, 183–188 (1996). https://doi.org/10.1007/BF00036468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036468

Key words

Navigation