Skip to main content
Log in

On compressible flow in a rotating cylinder

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Summary

Axisymmetric steady flow of a perfect gas in a rotating cylinder is studied by applying a linearised analysis to a small perturbation about isothermal rigid body rotation. Motivated by present day gas centrifuges, special attention is focussed on the effect of a length-to-radius ratio which increases from unit magnitude to infinity and on the effect of a strong radial density gradient associated with the isothermal rigid body rotation. The Ekman number E *based on the small radial density scale and the density at the cylinder wall is taken to be small. It appears that the flow outside Ekman boundary layers at the end caps consists of three types. These correspond to 1 ≪ L *E % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS% qaaSqaaiaaigdaaeaacaaIYaaaaaaa!386D!\[ - \tfrac{1}{2}\]* E % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS% qaaSqaaiaaigdaaeaacaaIYaaaaaaa!386D!\[ - \tfrac{1}{2}\]* L *, ≪ E −1* andE −1* L * where L *is the ratio of the cylinder-length to the radial density scale. For 1 ≪ L *E % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS% qaaSqaaiaaigdaaeaacaaIYaaaaaaa!386D!\[ - \tfrac{1}{2}\]* an inviscid flow in a region of limited thickness near the cylinder wall is found. Due to the strong decrease of the density, radial diffusion is not confined to Stewartson boundary layers at the wall (typical for incompressible flow) but extends in the core. This finds expression in two layers in the centre of the cylinder, parallel to the rotation axis, having a structure similar to both Stewartson layers and adjusting the inviscid flow near the wall to a flow dominated by radial diffusion near the rotation axis. For L *E % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS% qaaSqaaiaaigdaaeaacaaIYaaaaaaa!386D!\[ - \tfrac{1}{2}\]* and L *E −1* both Stewartson layers become successively of the same thickness as the density scale. At the same time the corresponding layers in the core go to the wall and join. As a result, for L *E −1* radial diffusive processes are significant in the entire cylinder, a situation also known from studies of flows in semi-infinite gas centrifuges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Mikami, Thermally induced flow in gas centrifuge (1), J. Nucl. Sci. Technol. 10 (1973) 396–401.

    Google Scholar 

  2. H. Mikami, Thermally induced flow in gas centrifuge (2), J. Nucl. Sci. Technol. 10 (1973) 580–583.

    Google Scholar 

  3. W. Nakayama and S. Usui, Flow in rotating cylinder of a gas centrifuge, J. Nucl. Sci. Technol. 11 (1974) 242–262.

    Google Scholar 

  4. T. Sakurai and T. Matsuda, Gasdynamics of a centrifugal machine, J. Fluid Mech. 62 (1974) 727–736.

    Google Scholar 

  5. H. P. Greenspan, The theory of rotating fluids, Camb. Univ. Press (1968).

  6. P. A. M. Dirac, The motion in a self-fractioning centrifuge, General Electric, Schenectady, New York, Rep. Br-42 (1940).

    Google Scholar 

  7. M. Steenbeck, Erzeugung einer Selbstkaskadierenden Axialströmung in einer langen Ultrazentrifuge zur Isotopentrennung, Kernenergie 1 (1958) 921–928.

    Google Scholar 

  8. J. L. Ging, Countercurrent flow in a semi-infinite gas centrifuge: axially symmetric solution in the limit of high angular speed, Univ. of Virginia, Charlottesville, Rep. EP-4422–198–62S (1962).

    Google Scholar 

  9. H. M. Parker and T. T. Mayo, Countercurrent flow in a semi-infinite gas centrifuge — preliminary results, Univ. of Virginia, Charlottesville, Rep. EP-4422–279–63U (1963).

    Google Scholar 

  10. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, John Wiley & Sons, New York (1960).

    Google Scholar 

  11. K. Stewartson, On almost rigid rotations, J. Fluid Mech. 3 (1957) 17–26.

    Google Scholar 

  12. J. J. H. Brouwers, On the motion of a compressible fluid in a rotating cylinder, Ph.D. Thesis, Thesis, Twente Univ. of Technology, Enschede, The Netherlands (1976).

  13. K. Stewartson, On almost rigid rotations. Part 2, J. Fluid Mech. 26 (1966) 131–144.

    Google Scholar 

  14. F. H. Bark and T. H. Bark, On vertical boundary layers in a rapidly rotating gas, J. Fluid Mech. 78 (1976) 749–761.

    Google Scholar 

  15. J. Durivault and P. Louvet, Etude de la couche de Stewartson compressible dans une centrifugeuse à contrecourant thermique, C. R. Acad. Sc. Paris t. 283 série B (1976) 79–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouwers, J.J.H. On compressible flow in a rotating cylinder. J Eng Math 12, 265–285 (1978). https://doi.org/10.1007/BF00036464

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036464

Keywords

Navigation