Skip to main content
Log in

Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Specimen size and geometry effects on cleavage fracture of ferritic steels tested in the ductile-to-brittle transition region remain an important technological impediment in industrial applications of fracture mechanics and in the on-going development of consensus fracture testing standards. This investigation employs 3-D nonllinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint model for cleavage fracture toughness proposed previously by Dodds and Anderson. An extension of the toughness scaling model suggested here combines a revised ‘in-plane’ constraint correction with an explicit thickness correction derived from extreme value statistics. The 3-D analyses provide ‘effective’ thicknesses for use in the statistical correction which reflect the interaction of material flow properties and specimen aspect ratios, a/W and W/B, on the varying levels of stress triaxiality over the crack front. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limit indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress-controlled, cleavage mechanism in deep notch SE(B) and C(T) speciments. Moreover, the analyses indicate that side grooves (20 percent) should have essentially no net effect on measured toughness values of such specimens. Additional new results made available from the 3-D analyses also include revised η-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front. To estimate CTOD values, new m-factors are included for use in the expression 131-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Hutchinson, Journal of Applied Mechanics 50 (1983) 1042–1051.

    Article  Google Scholar 

  2. J.R. Rice, Journal of Applied Mechanics 35 (1986) 379–386.

    Article  Google Scholar 

  3. R.O. Ritchie, J.F. Knott and J.R. Rice, Journal of Mechanics and Physics of Solids 21 (1973) 395–410.

    Article  Google Scholar 

  4. T. Lin, A.G. Evans and R.O. Ritchie, Journal of Mechanics and Physics of Solids 21 (1986) 263–277.

    Google Scholar 

  5. R.M. McMeeking and D.M. Parks, Elastic-Plastic Fracture, ASTM STP 668, J.D. Landes, J.A. Begley and G.A. Clark (eds), ASTM, Philadelphia, Pennsylvania (1979) 175–194.

    Chapter  Google Scholar 

  6. C.F. Shih and M.D. German, International Journal of Fracture 17, No. 1 (1981) 27–43.

    Google Scholar 

  7. A.M. Al-Ani and J.W. Hancock, Journal of Mechanics and Physics of Solids 39 (1991) 23–43.

    Article  Google Scholar 

  8. W.A. Sorem, R.H. Dodds and S.T. Rolfe, International Journal of Fracture 47 (1991) 105–126.

    Article  Google Scholar 

  9. P.M.S.T. DeCastro, J. Spurrire and P. Hancock, Fracture Mechanics, ASTM STP 667, C.W. Smith (ed.), ASTM, Philadelphia, Pennsylvania (1979) 486–497.

    Chapter  Google Scholar 

  10. N.P. O'Dowd and C.F. Shih, Journal of the Mechanics and Physics of Solids 39, No. 8 (1991) 989–1015.

    Article  Google Scholar 

  11. N.P. O'Dowd and C.F. Shih, Journal of the Mechanics and Physics of Solids 40 (1992) 939–963.

    Article  Google Scholar 

  12. S.M. Sharma and N. Aravas, Journal of Mechanics and Physics of Solids 39 (1991) 1043–1072.

    Article  Google Scholar 

  13. L. Xia, T.C. Wang and C.F. Shih, Journal of Mechanics and Physics of Solids, to appear

  14. Y.C. Li and T.C. Wang, Scientia Sinica (Series A) 29 (1986) 941–955.

    Google Scholar 

  15. C. Betegon and J.W. Hancock, Journal of Applied Mechanics 58 (1991) 104–113.

    Article  Google Scholar 

  16. Z.-Z. Du and J.W. Hancock, Journal of Mechanics and Physics of Solids 39 (1991) 555–567.

    Article  Google Scholar 

  17. D.M. Parks, in Topics in Fracture and Fatigue, A.S. Argon (ed.) Springer Verlag (1992) 59–98.

  18. Y.Y. Wang, in Constraint Effects in Fracture, ASTM STP 1171, Hackett et al. (eds.) ASTM, Philadelphia (1993) 120–138.

    Chapter  Google Scholar 

  19. Y.Y. Wang, ‘A Two-Parameter Characterization of Elastic-Plastic Crack-Tip and Applications to Cleavage Fracture’, Ph.D thesis, Department of Mechanical Engineering, MIT, 1991.

  20. Y.Y. Wang and D.M. Parks, International Journal of Fracture 56 (1992) 25–40.

    Article  Google Scholar 

  21. T. Nakamura and D.M. Parks, International Journal of Solids and Structures 29 (1992) 1597–1611.

    Article  Google Scholar 

  22. R.H. Dodds, T.L. Anderson and M.T. Kirk, International Journal of Fracture 48 (1991) 1–22.

    Article  Google Scholar 

  23. T.L. Anderson and R.H. Dodds, Journal of Testing and Evaluation 19 (1991) 123–134.

    Article  Google Scholar 

  24. B.A. Bilby, G.E. Cardew, M.R. Goldthorpe and I.C. Howard, Institution of Mechanical Engineers, London, England (1986) 36–46.

  25. F.M. Beremin, Metallurgical Transactions 14A (1983) 2277–2287.

    Article  Google Scholar 

  26. K. Wallin, T. Saario and K. Torronen, Metal Science 18 (1984) 13–16.

    Article  Google Scholar 

  27. K. Wallin, Engineering fracture Mechanics 19 (1984) 1085–1093.

    Article  Google Scholar 

  28. K. Wallin, Engineering Fracture Mechanics 22 (1985) 149–163.

    Article  Google Scholar 

  29. K. Wallin, Engineering Fracture Mechanics 32 (1989) 523–531.

    Article  Google Scholar 

  30. K. Wallin, in Defect Assessment in Components-Fundamentals and Applications, ESIS/EGF9, J.G. Blauel and K.-H. Schwalbe (eds.) Mechanical Engineering Publications, London (1991) 415–445.

    Google Scholar 

  31. K. Wallin, in Constraint Effects in Fracture, ASTM STP 1171, Hackett et al. (eds.) ASTM, Philadelphia (1993) 264–288.

    Google Scholar 

  32. B. Moran and C.F. Shih, Engineering Fracture Mechanics 27 (1987) 615–642.

    Article  Google Scholar 

  33. K. Koppenhoefer, A. Gullerud, C. Ruggieri, R. Dodds and B. Healy, ‘WARP3D: Dynamic Nonlinear Analysis of Solids Using a Preconditioned Conjugate Gradient Software Architecture’, Structural Research Series (SRS) 596, UILU-ENG-94-2017, University of Illinois at Urbana-Champaign (1994).

  34. T.J. Hughes, International Journal for Numerical Methods in Engineering 15 (1980) 1413–1418.

    Article  Google Scholar 

  35. T.J. Hughes, I. Levit and J.M. Winget, Computer Methods in Applied Mechanics and Engineering 36 (1983) 241–254.

    Article  Google Scholar 

  36. T.J.R. Hughes, R.M. Ferencz and J.O. Hallquist, Computer Methods in Applied Mechanics and Engineering 61 (1987) 215–248.

    Article  Google Scholar 

  37. J.C. Nagtegaal, D.M. Parks and J.R. Rice, Computer Methods in Applied Mechanics and Engineering 4 (1974) 153–178.

    Article  Google Scholar 

  38. F.Z. Li, C.F. Shih and A. Needleman, Engineering Fracture Mechanics 21 (1985) 405–421.

    Article  Google Scholar 

  39. B. Moran and C.F. Shih, International Journal of Fracture 35 (1987) 295–310.

    Article  Google Scholar 

  40. C.F. Shih, B. Moran and T. Nakamura, International Journal of Fracture 30 (1986) 79–102.

    Google Scholar 

  41. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, Boston (1994).

    Google Scholar 

  42. J. Herrens and D.T. Read, ‘Fracture Behavior of a Pressure Vessel Steel in the Ductile-to-Brittle Transition Region’, NISTIR 88–3099, National Institute for Standards and Technology, Boulder, Colorado, December, 1988.

    Google Scholar 

  43. MT. Miglin, C.S. Wade and W.A. Van Der Sluys, Fracture Mechanics; Twenty-First Symposium, ASTM STP 1074, J.P. Gudas, J.A. Joyce, and E.M. Hackett (eds.), Philadelphia, Pennsylvania (1990) 238–263.

  44. P.S. Leevers and J.C. Radon, International Journal of Fracture 19 (1982) 311–325.

    Article  Google Scholar 

  45. S.B. Batdorf and J.G. Crose, Journal of Applied Mechanics 41 (1974) 459–464.

    Article  Google Scholar 

  46. A. Bruckner-Foit, W. Ehl, D. Munz and B. Trolldenier, Fatigue and Fracture of Engineering Materials and Structures 13 (1990) 185–200.

    Article  Google Scholar 

  47. C. Ruggieri, F. Minami and M. Toyoda, ‘A Statistical Approach for Fracture of Brittle Materials Based on the Chain-of-Bundles Model’, Journal of Applied Mechanics, to appear.

  48. S. Yang, Y.J. Chao and M.A. Sutton, Engineering Fracture Mechanics 45 (1993) 1–20.

    Article  Google Scholar 

  49. Y.J. Chao and M.A. Sutton, Journal of Mechanics and Physics of Solids 42 (1994) 629–647.

    Article  Google Scholar 

  50. D.A. Curry and J.K. Knott, Metals Science 13 (1979) 341–345.

    Article  Google Scholar 

  51. A.G. Evans, Journal of American Ceramic Society 61 (1978) 302–308.

    Article  Google Scholar 

  52. R.H. Dodds, C.F. Shih and T.L. Anderson, International Journal of Fracture 64 (1993) 101–133.

    Google Scholar 

  53. M.L. Williams, Journal of Applied Mechanics 24 (1957) 109–114.

    Google Scholar 

  54. J. Faleskog, International Journal of Fracture 68 (1994) 99.

    Article  Google Scholar 

  55. T.J. Theisis and J.W. Bryson, in Constraint Effects in Fracture, ASTM STP 1171, E.M. Hackett et al. (eds.), Philadelphia (1993) 104–119.

  56. E. Morland, in Fracture Mechanics; Twenty-First Symposium, ASTM STP 1074, J.P. Gudas et al. (eds.), Philadelphia (1990) 215–237.

  57. T. Ingham, N. Knee, I. Milne and E. Morland, in Fracture Mechanics: Perspectives and Directions: Twentieth Symposium ASTM STP 1020, R.P. Wei and R. Gangloff (eds.), Philadelphia (1989) 369–389.

  58. B. Faucher and W.R. Tyson, in Constraint Effects in Fracture ASTM STP 1171, Hackett et al. (eds.), Philadelphia (1993) 306–317.

  59. H.de Lorenzi and C.F. Shih, International Journal of Fracture 13 (1983) 195–220.

    Article  Google Scholar 

  60. K. Machida, M. Kikuchi and H. Miyamoto, in Analytical, Numerical and Experimental Aspects of Three-Dimensional Fracture Processes, AMD-Vol. 91, ASME (1988) 309–319.

  61. R. Koers, H. Braam and A. Bakker, in Proceedings, 7th International Conference on Fracture (ICF7), Houston, Texas (1989) 379–389.

  62. W. Brocks and J. Olschewski, International Journal of Solids and Structures 22 (1986) 693–708.

    Article  Google Scholar 

  63. R. Narasimhan, A.J. Rosakis and A.T. Zehnder, in Analytical Numerical and Experimental Aspects of Three-Dimensional Fracture Processes, AMD-Vol. 91, ASME (1988) 239–254.

  64. M.T. Kirk and R.H. Dodds, Journal of Testing and Evaluation 24, No. 4 (1993) 228–238.

    Google Scholar 

  65. F. Minami, A. Brückner-Foit, D. Munz and B. Trolldenier, International Journal of Fracture 54 (1992) 197–210.

    Google Scholar 

  66. F. Mudry, Nuclear Engineering and Design 105 (1987) 65–76.

    Article  Google Scholar 

  67. M. Nevalainen, K. Wallin and R. Rintamaa, in Fracture Mechanics: Twenty-Fourth Symposium. ASTM STP 1207, John D. Landes, Donald E. McCabe and J.A.M. Boulet (eds.), Philadelphia (1995) to appear.

  68. M. Nevalainen and K. Wallin, in Structural Integrity: Experiments, Models and Applications, Vol. 2. K-H. Schwalbe and C. Berger (eds.) European Structural Integrity Society, Berlin (1994) 997–1006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevalainen, M., Dodds, R.H. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens. Int J Fract 74, 131–161 (1996). https://doi.org/10.1007/BF00036262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036262

Keywords

Navigation