Skip to main content
Log in

On the effects of higher vibration modes in the analysis of three point bend testing

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Influence of higher modes of vibration in the dynamic analysis of impact three point bend specimen based on Euler-Bernoulli and Timoshenko beam theories are investigated in an attempt to predict the oscillatory behavior seen in the measured dynamic SIF history. Forced vibration of the cracked beam is analyzed by normal mode summation method. Contact force history computed using fundamental mode approximation is applied as input forcing function and the computed SIF histories are compared with finite element model and experimental data. Analytical and finite element results show that modes higher than the third have practically no influence on the notched beam response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E.Nash, International Journal of Fracture Mechanics 5 (1969) 269–286

    Google Scholar 

  2. H.J.Petroski, International Journal of Fracture 17 (1981) R71-R76

    Google Scholar 

  3. K.Kishimoto, S.Aoki and M.Sakata, Engineering Fracture Mechanics 13 (1980) 501–508

    Google Scholar 

  4. J.G.Williams, International Journal of Fracture 33 (1987) 47–59

    Google Scholar 

  5. A.G.Dutton and R.A.W.Mines, International Journal of Fracture 51 (1991) 187–206

    Google Scholar 

  6. P.R.Marur, K.R.Y.Simha and P.S.Nair, International Journal of Fracture 68 (1994) 261–273

    Google Scholar 

  7. C.Bacon, J.Farm and J.L.Lataillade, Experimental Mechanics 34 (1994) 217–223

    Google Scholar 

  8. P.W.McMillan and J.R.Tesh, Journal of Material Science 10 (1975) 621–632

    Google Scholar 

  9. V.S.Gopalaratnam, S.P.Shah and R.John, Experimental Mechanics 24 (1984) 102–111

    Google Scholar 

  10. P.R.Marur, K.R.Y.Simha and P.S.Nair, Engineering Fracture Mechanics 53 (1996) 481–491

    Google Scholar 

  11. S.Sahraoui and F.Gillaizeau, Engineering Fracture Mechanics 33 (1989) 871–876

    Google Scholar 

  12. S.Timoshenko, Vibration Problems in Engineering, John Wiley and Sons, N.Y. (1974)

    Google Scholar 

  13. K.Kishimoto, Y.Fujino, S.Aoki and M.Sakata, JSME International Journal, Series I 33 (1990) 51–56

    Google Scholar 

  14. K. Kishimoto, M. Kuroda, S. Aoki and M. Sakata, in Proceedings ICF 6, Vol. 5 (1984) 3177–3184

  15. ASTM E399, Standard Test Method for Plain-strain Fracture Toughness of Metallic Materials (1983)

  16. K.Kishimoto, S.Aoki and M.Sakata, Engineering Fracture Mechanics 13 (1980) 501–508

    Google Scholar 

  17. P.R.Marur, K.R.Y.Sima and P.S.Nair, International Journal of Fracture 69 (1994/1995) R57-R62

    Google Scholar 

  18. P.R.Marur, Computers and Structures 59 (1996) 1115–1120

    Google Scholar 

  19. K.Marguerre and K.Wolfel, Mechanics of Vibration, Sijthoff and Noordhoff International Publishers, Netherlands (1979)

    Google Scholar 

  20. B.A.Crouch and J.G.Williams, Journal of Mechanics and Physics of Solids 36 (1988) 1–13

    Google Scholar 

  21. P.R.Marur, K.R.Y.Simha and P.S.Nair, Journal of Testing and Evaluation 23 (1995) 267–274

    Google Scholar 

  22. W.Bohme and J.F.Kalthoff, International Journal of Fracture 20 (1982) R139-R143

    Google Scholar 

  23. A.G. Dutton, Ph.D. thesis, University of Liverpool (1989)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marur, P.R. On the effects of higher vibration modes in the analysis of three point bend testing. Int J Fract 77, 367–379 (1996). https://doi.org/10.1007/BF00036253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036253

Keywords

Navigation