Crack propagation in monolithic ceramics under mixed mode loading

Abstract

Finite element calculations are presented for a semi-infinite crack in a brittle solid undergoing microcracking normal to the maximum tensile direction. Microcracks are presumed stable and a saturation stage is postulated wherein the effective elastic moduli attain steady state values. Mode I, mode II and mixed mode loading conditions are investigated. In these two latter cases, the method of analysis employed allows for cracks to grow out of their initial planes. The mixed mode loading case investigated corresponds to taking equal values of the remote mode I and II stress intensity factors. Contrary to what is observed in the mode I case, no appreciable R-curve behavior is found under mode II or mixed mode conditions.

Résumé

On présente des calculs par éléments finis pour une fissure semi-infinie dans un corps fragile comportant une micro-fissuration normale par rapport à la direction des tensions principales. On suppose que les microfissures sont stables et on postule un stade de saturation au cours duquel les modules d'élasticité atteignent des valeurs constantes. Les conditions de sollicitation en Mode I, et Mode II et en mode mixte sont étudiées et, dans les deux derniers cas, la méthode d'analyse utilisée autorise les fissures à croître hors de leur plant initial.

Le mode mixte de mise en charge étudiée revient à prendre des valeurs égales pour les facteurs d'intensité des contraintes agissant à distance selon les Modes I et II.

A l'inverse de ce que l'on observe dans le cas du Mode I, on ne trouve pas de comportement significatif selon une courbe R pour les conditions en Mode II et en mode mixte.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y. Fu, Ph.D. thesis, University of California, Berkeley (1983).

    Google Scholar 

  2. 2.

    A.G. Evans and Y. Fu, Acta Metallurgica 33 (1985) 1515–1524.

    Google Scholar 

  3. 3.

    A.G. Evans and Y. Fu, Acta Metallurgica 33 (1985) 1525–1531.

    Google Scholar 

  4. 4.

    A.G. Evans, in Defect Properties and Processing of High-Technology Nonmetallic Materials, North-Holland (1984) 63–80.

  5. 5.

    R.G. Hoagland, G.T. Hahn, and A.R. Rosenfield, Rock Mechanics 5 (1973) 77–106.

    Google Scholar 

  6. 6.

    N. Claussen, Journal of the American Ceramic Society 59 (1976) 49–51.

    Google Scholar 

  7. 7.

    C.C. Wu, S.W. Freiman, R.W. Rice, and J.J. Melcholsky, Journal of Materials Science 13 (1976) 2659–2670.

    Google Scholar 

  8. 8.

    R.G. Hoagland and J.D. Embury, Journal of the American Ceramic Society 63 (1980) 404–410.

    Google Scholar 

  9. 9.

    M. Kachanov, International Journal of Fracture 30 (1986) R65-R72.

    Google Scholar 

  10. 10.

    P.G. Charalambides, Ph.D. thesis, University of Illinois, Urbana-Champaign (1986).

    Google Scholar 

  11. 11.

    S. Gong and H. Horii, General Solution to the Problem of Microcracks near the Tip of a Main Crack, Report 87-12, Department of Civil Engineering, University of Tokyo (December 1987).

  12. 12.

    J.W. Hutchinson, Acta Metallurgica 35 (1987) 1605–1619.

    Google Scholar 

  13. 13.

    M. Ortiz, Journal of Applied Mechanics 54 (1987) 54–58.

    Google Scholar 

  14. 14.

    G. Rodin, International Journal of Fracture 33 (1987) R31-R35.

    Google Scholar 

  15. 15.

    M. Ortiz and A.E. Giannakopoulos, Journal of Applied Mechanics 56 (1989) 279–283.

    Google Scholar 

  16. 16.

    M. Ortiz and A.E. Giannakopoulos, International Journal of Solids and Structures, to appear.

  17. 17.

    M. Ortiz, International Journal of Solids and Structures 24 (1988) 231–250.

    Google Scholar 

  18. 18.

    P.G. Charalambides and R.M. McMeeking, Mechanics of Materials 6 (1987) 71–87.

    Google Scholar 

  19. 19.

    K.T. Faber and A.G. Evans, Acta Metallurgica 31 (1983) 565–576.

    Google Scholar 

  20. 20.

    K.T. Faber and A.G. Evans, Acta Metallurgica 31 (1983) 577–584.

    Google Scholar 

  21. 21.

    P.L. Swanson, C.J. Fairbanks, B.R. Lawn, Y.W. Mai and B.J. Hockey, Journal of the American Ceramic Society 70 (1987) 279–289.

    Google Scholar 

  22. 22.

    M. Ortiz and A. Molinari, Journal of the Mechanics and Physics of Solids 36 (1988) 385–400.

    Google Scholar 

  23. 23.

    B. Budiansky, J.W. Hutchinson and J.C. Lambropoulos, International Journal of Solids and Structures 19 (1983) 337–355.

    Google Scholar 

  24. 24.

    M. Ortiz, Mechanics of Materials 4 (1985) 67–93.

    Google Scholar 

  25. 25.

    S. Suresh and J.R. Brockenbrough, Acta Metallurgica 36 (1988) 1455–1470.

    Google Scholar 

  26. 26.

    D.R. Hayhurst, Journal of the Mechanics and Physics of Solids 20 (1972) 381–390.

    Google Scholar 

  27. 27.

    D.R. Hayhurst and F.A. Leckie, Journal of the Mechanics and Physics of Solids 21 (1973) 431–446.

    Google Scholar 

  28. 28.

    R.L. Kranz, Tectonophysics 100 (1983) 449.

    Google Scholar 

  29. 29.

    J.R. Brockenbrough and S. Suresh, Journal of the Mechanics and Physics of Solids 35 (1987) 721–742.

    Google Scholar 

  30. 30.

    J.R. Price, in Fracture 2, Academic Press (1968) 191–311.

  31. 31.

    V. Tvergaard and A. Needleman, Acta Metallurgica 32 (1984) 157–169.

    Google Scholar 

  32. 32.

    D.C. Shetty, A.R. Rosenfield, and W.H. Duckworth, Journal of the American Ceramic Society 69 (1981) 437–443.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ortiz, M., Giannakopoulos, A.E. Crack propagation in monolithic ceramics under mixed mode loading. Int J Fract 44, 233–258 (1990). https://doi.org/10.1007/BF00036167

Download citation

Keywords

  • Stress Intensity Factor
  • Mixed Mode
  • Finite Element Calculation
  • Tensile Direction
  • Mixed Mode Load