Abstract
Finite element calculations are presented for a semi-infinite crack in a brittle solid undergoing microcracking normal to the maximum tensile direction. Microcracks are presumed stable and a saturation stage is postulated wherein the effective elastic moduli attain steady state values. Mode I, mode II and mixed mode loading conditions are investigated. In these two latter cases, the method of analysis employed allows for cracks to grow out of their initial planes. The mixed mode loading case investigated corresponds to taking equal values of the remote mode I and II stress intensity factors. Contrary to what is observed in the mode I case, no appreciable R-curve behavior is found under mode II or mixed mode conditions.
Résumé
On présente des calculs par éléments finis pour une fissure semi-infinie dans un corps fragile comportant une micro-fissuration normale par rapport à la direction des tensions principales. On suppose que les microfissures sont stables et on postule un stade de saturation au cours duquel les modules d'élasticité atteignent des valeurs constantes. Les conditions de sollicitation en Mode I, et Mode II et en mode mixte sont étudiées et, dans les deux derniers cas, la méthode d'analyse utilisée autorise les fissures à croître hors de leur plant initial.
Le mode mixte de mise en charge étudiée revient à prendre des valeurs égales pour les facteurs d'intensité des contraintes agissant à distance selon les Modes I et II.
A l'inverse de ce que l'on observe dans le cas du Mode I, on ne trouve pas de comportement significatif selon une courbe R pour les conditions en Mode II et en mode mixte.
This is a preview of subscription content, access via your institution.
References
- 1.
Y. Fu, Ph.D. thesis, University of California, Berkeley (1983).
- 2.
A.G. Evans and Y. Fu, Acta Metallurgica 33 (1985) 1515–1524.
- 3.
A.G. Evans and Y. Fu, Acta Metallurgica 33 (1985) 1525–1531.
- 4.
A.G. Evans, in Defect Properties and Processing of High-Technology Nonmetallic Materials, North-Holland (1984) 63–80.
- 5.
R.G. Hoagland, G.T. Hahn, and A.R. Rosenfield, Rock Mechanics 5 (1973) 77–106.
- 6.
N. Claussen, Journal of the American Ceramic Society 59 (1976) 49–51.
- 7.
C.C. Wu, S.W. Freiman, R.W. Rice, and J.J. Melcholsky, Journal of Materials Science 13 (1976) 2659–2670.
- 8.
R.G. Hoagland and J.D. Embury, Journal of the American Ceramic Society 63 (1980) 404–410.
- 9.
M. Kachanov, International Journal of Fracture 30 (1986) R65-R72.
- 10.
P.G. Charalambides, Ph.D. thesis, University of Illinois, Urbana-Champaign (1986).
- 11.
S. Gong and H. Horii, General Solution to the Problem of Microcracks near the Tip of a Main Crack, Report 87-12, Department of Civil Engineering, University of Tokyo (December 1987).
- 12.
J.W. Hutchinson, Acta Metallurgica 35 (1987) 1605–1619.
- 13.
M. Ortiz, Journal of Applied Mechanics 54 (1987) 54–58.
- 14.
G. Rodin, International Journal of Fracture 33 (1987) R31-R35.
- 15.
M. Ortiz and A.E. Giannakopoulos, Journal of Applied Mechanics 56 (1989) 279–283.
- 16.
M. Ortiz and A.E. Giannakopoulos, International Journal of Solids and Structures, to appear.
- 17.
M. Ortiz, International Journal of Solids and Structures 24 (1988) 231–250.
- 18.
P.G. Charalambides and R.M. McMeeking, Mechanics of Materials 6 (1987) 71–87.
- 19.
K.T. Faber and A.G. Evans, Acta Metallurgica 31 (1983) 565–576.
- 20.
K.T. Faber and A.G. Evans, Acta Metallurgica 31 (1983) 577–584.
- 21.
P.L. Swanson, C.J. Fairbanks, B.R. Lawn, Y.W. Mai and B.J. Hockey, Journal of the American Ceramic Society 70 (1987) 279–289.
- 22.
M. Ortiz and A. Molinari, Journal of the Mechanics and Physics of Solids 36 (1988) 385–400.
- 23.
B. Budiansky, J.W. Hutchinson and J.C. Lambropoulos, International Journal of Solids and Structures 19 (1983) 337–355.
- 24.
M. Ortiz, Mechanics of Materials 4 (1985) 67–93.
- 25.
S. Suresh and J.R. Brockenbrough, Acta Metallurgica 36 (1988) 1455–1470.
- 26.
D.R. Hayhurst, Journal of the Mechanics and Physics of Solids 20 (1972) 381–390.
- 27.
D.R. Hayhurst and F.A. Leckie, Journal of the Mechanics and Physics of Solids 21 (1973) 431–446.
- 28.
R.L. Kranz, Tectonophysics 100 (1983) 449.
- 29.
J.R. Brockenbrough and S. Suresh, Journal of the Mechanics and Physics of Solids 35 (1987) 721–742.
- 30.
J.R. Price, in Fracture 2, Academic Press (1968) 191–311.
- 31.
V. Tvergaard and A. Needleman, Acta Metallurgica 32 (1984) 157–169.
- 32.
D.C. Shetty, A.R. Rosenfield, and W.H. Duckworth, Journal of the American Ceramic Society 69 (1981) 437–443.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Ortiz, M., Giannakopoulos, A.E. Crack propagation in monolithic ceramics under mixed mode loading. Int J Fract 44, 233–258 (1990). https://doi.org/10.1007/BF00036167
Received:
Accepted:
Issue Date:
Keywords
- Stress Intensity Factor
- Mixed Mode
- Finite Element Calculation
- Tensile Direction
- Mixed Mode Load