Skip to main content
Log in

Sources and sinks of greenhouse gases in the soil-plant environment

  • Measurement
  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The paper is concerned mainly with nitrous oxide, methane and carbon dioxide, which account for more than 70% of predicted greenhouse warming. All three have significant sources in the soil-plant environment and principal sinks in the atmosphere or the oceans. The emphasis is on methodological problems associated with measuring source and sink strengths, but the biogeochemistry of individual gases and problems of scaling to longer times and larger areas are addressed also.

Nitrous oxide accounts for some 6% of predicted greenhouse warming. Its atmospheric concentration is 315 ppbv and is increasing at 0.25% per year. The principal sink appears to be destruction through photochemical processes in the stratosphere. The main causes of the N2O increase are thought to be biomass burning, fossil fuel combustion processes, and what now seem to be substantial emissions from soils associated with increased nitrogen inputs, irrigation and tropical land clearing. Uncertainty about the strengths of the soil sources is due largely to our reliance on enclosure techniques for flux measurement, and the lack of appropriate scaling procedures. Methane now accounts for 18% of anticipated greenhouse warming. Its atmospheric concentration is 1.7 ppmv and is increasing at 1% per year. Its greenhouse effect seems likely to increase over the next 50 years. The biggest sink appears to be oxidation in the atmosphere, but some oxidation occurs in soils as well. The main sources are rice fields, wetlands, biomass burning, ruminants, land fills, natural gas production, and coal mining. As for N2O, there is much uncertainty about individual source strengths and there are urgent needs for better measurement and scaling techniques.

Increased CO2 concentrations account for 49% of the greenhouse effect. The present atmospheric CO2 concentration is 350 ppmv, increasing at 0.4% per year. Over 80% of the increase is due to fossil fuels, and the rest to deforestation and biomass burning. Atmospheric fluxes of CO2 can be measured much more precisely than those of N2O and CH4, by micrometeorological techniques, but the scaling problem still remains. The largest known sink for CO2 is the oceans, but recent calculations point to a large ‘missing’ sink for CO2, which may be as yet unidentified sequestering processes in terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouwman, A. F. (ed.) 1990. Soils and the greenhouse effect. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Cowan, I. R. 1988. Stomatal physiology and gas exchange in the field. In: Steffen, W. L. & Denmead, O.T. (eds.), Flow and transport in the natural environment: Advances and applications, pp. 160–172. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H. & Seiler, W. 1979. Biomass burning as a source of atmospheric gases CO2, H2, H2O, NO, CH3Cl and COS. Nature 282: 253–256.

    Google Scholar 

  • Denmead, O. T. 1979. Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Sci. Soc. Am. J. 43: 89–95.

    Google Scholar 

  • Denmead, O. T. 1984. Plant physiological methods for studying evapotranspiration: problems of telling the forest from the trees. Agric. Water Manage. 8: 167–189.

    Google Scholar 

  • Denmead, O. T. & Bradley, E. F. 1985. Flux-gradient relationships in a forest canopy. In: Hutchinson, B. A. & Hicks, B. B. (eds.), The forest-atmosphere interaction, pp. 421–442. D. Reidel Publishing Co., Dordrecht.

    Google Scholar 

  • Denmead, O. T. & Bradley, E. F. 1987. On scalar transport in plant canopies. Irrig. Sci. 8: 131–149.

    Google Scholar 

  • Denmead, O. T. & Bradley, E. F. 1989. Eddy-correlation measurement of the CO2 flux in plant canopies. Proc. Fourth Australasian Conf. on Heat and Mass Transfer, Christchurch, N.Z., pp. 183–192. Secretariat, Fourth Australasian Conf. on Heat and Mass Transfer, Christchurch.

  • Dickinson, R. E. & Cicerone, R. J. 1986. Future global warming from atmospheric trace gases. Nature 319: 109–115.

    Google Scholar 

  • Dunin, F. X. & Greenwood, E. A. N. 1986. Evaluation of the ventilated chamber for measuring evaporation from a forest. Hydrol. Proc. 1: 47–62.

    Google Scholar 

  • Firestone, M. K. & Davidson, E. A. 1989. Microbiological basis of NO and N2O production and consumption in soil. In: Andreae, M. O. & Schimel, D. S. (eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp. 7–21. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Freney, J. R., Simpson, J. R., Denmead, O. T., Muirhead, W. A. & Leuning, R. 1985. Transformations and transfers of nitrogen after irrigating a cracking clay soil with a urea solution. Aust. J. Agric. Res. 36: 685–694.

    Google Scholar 

  • Galbally, I. E. & Roy, C. R. 1978. Loss of fixed nitrogen from soils by nitric oxide exhalation. Nature 275: 734–735.

    Google Scholar 

  • Galbally, I. E., Roy, C. R., Elsworth, C. M. & Rabich, H. A. H. 1985. The measurement of nitrogen oxide (NO, NO2) exchange over plant/soil surfaces. CSIRO Australia Div. Atmos. Res. Tech. Paper No. 8, 23 pp.

  • Greenwood, E. A. N., Beresford, J. D., Klein, L. & Watson, G. D. 1982. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated chamber technique. J. Hydrol. 58: 357–366.

    Google Scholar 

  • Holzapfel-Pschorn, A., Conrad, R. & Seiler, W. 1986. Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil 92: 223–233.

    Google Scholar 

  • Keller, M., Kaplan, W. A. & Wofsy, S. C. 1986. Emissions of N2O, CH4 and CO2 from tropical forest soils. J. Geophys. Res. 91: 11,791–11,802.

    Google Scholar 

  • Leuning, R., Denmead, O. T., Lang, A. R. G. & Ohtaki, E. 1982. Effects of heat and water vapour transport on eddy covariance measurement of CO2 fluxes. Boundary-Layer Meteorol. 23: 255–258.

    Google Scholar 

  • Leuning, R., & Foster, I. 1990. Estimation of transpiration by single trees: Comparison of a ventilated chamber, leaf energy budgets and a combination equation. Agric. For. Meteorol. (in press).

  • Melillo, J. M., Steudler, P. A., Aber, J. D. & Bowden, R. D. 1989. Atmospheric deposition and nutrient cycling. In: Andreae, M O. & Schimel, D. S. (eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp. 263–280. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Mosier, A. R. 1989. Chamber and isotope techniques. In: Andreae, M. O. & Schimel, D. S. (eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp. 175–187. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Pearce, F. 1989. Methane: the hidden greenhouse gas. New Scientist, 6 May 1989, 19–23.

  • Pearman, G. I. 1988. Greenhouse gases: evidence for atmospheric changes and anthropogenic causes. In: Pearman, G. I. (ed.), Greenhouse planning for climate change, pp. 3–21, CSIRO, Australia.

    Google Scholar 

  • Pearman, G. I., Etheridge, F., deSilva, F. & Fraser, P. J. 1986. Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in Antarctic ice. Nature 320: 248–250.

    Google Scholar 

  • Pearman, G. I. & Fraser, P. J. 1988. Sources of increased methane. Nature 332: 482–490.

    Google Scholar 

  • Philip, J. R. 1987. Advection, evaporation, and surface resistance. Irrig. Sci. 8: 101–114.

    Google Scholar 

  • Raupach, M. R. 1989a. A practical Lagrangian method for relating scalar concentrations to source distributions in vegetation canopies. Q. J. R. Meteorol. Soc. 115: 609–632.

    Google Scholar 

  • Raupach, M. R. 1989b. Applying Lagrangian fluid mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agric. For. Meteorol. 47: 85–108.

    Google Scholar 

  • Robertson, G. P., Andreae, M. O., Bingemer, H. G., Crutzen, P. J., Delmas, R. A., Duyzer, J. H., Fung, I., Harriss, R. C., Kanakidou, M., Keller, M., Melillo, J. M. & Zavaria, G. A. 1989. Group report-Trace gas exchange and the chemical and physical climate: critical interactions. In: Andreae, M. O. & Schimel, D. S. (eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp. 303–320. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Rosenberg, N. J., McKenney, M. S. & Martin, P. 1989. Evapotranspiration in a greenhouse-warmed world: a review and a simulation. Agric. For. Meteorol. 47: 303–320.

    Google Scholar 

  • Rosswall, T., Bak, F., Baldocchi, D., Cicerone, R. J., Conrad, R., Ehhalt, D. H., Firestone, M. K., Galbally, I. E., Galchenko, V. F., Groffman, P. M., Papen, H., Reeburgh, W. S. & Sanhueza, E. 1989. Group report-What regulates production and consumption of trace gases in ecosystems: biology or physicochemistry? In: Andreae, M. O. & Schimel, D. S. (eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp. 73–95. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H. & Seiler, W. 1989. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. 94: 16,405–16,416.

    Google Scholar 

  • Schütz, H. & Seiler, H. 1989. Methane flux measurements: methods and results. In: Andreae, M. O. & Schimel, D. S. (eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp. 209–228. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Seiler, W., Holzapfel-Pschorn, R., Conrad, R. & Scharffe, D. 1984. Methane emissions from rice paddies. J. Atmos. Chem. 1: 241–268.

    Google Scholar 

  • Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature 341: 314–316.

    Google Scholar 

  • Stewart, J. W. B., Asselman, I., Bouwman, A. F., Desjardins, R. L., Hicks, B. B., Matson, P. A., Rodhe, H., Schimel, D. S., Svensson, B. H., Wassmann, R., Whiticar, M. J. & Yang, W.-X. 1989. Group report-Extrapolation of flux measurements to regional and global scales. In: Andreae, M. O. & Schimel, D. S. (eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp. 155–174. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Vitousek, P. M., Denmead, O. T., Fowler, D., Johansson, C., Kesselmeier, J., Klemedtsson, L., Meixner, F. X., Mosier, A. R., Schütz, H., Stal, L. J. & Wahlen, M. 1989. Group report-What are the relative roles of biological production, micrometeorology, and photochemistry in controlling the flux of trace gases between terrestrial ecosystems and the atmosphere? In: Andreae, M. O. & Schimel, D. S. (eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere, pp. 249–261. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Wahlen, M., Tanaka, N., Henry, R., Deck, B., Seglen, J., Vogel, J. S., Southon, J., Shermesh, A., Fairbanks, R. & Broecker, W. 1989. Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science 245: 286–290.

    Google Scholar 

  • Walker, B. H., Young, M. D., Parslow, J. S., Cocks, K. D., Fleming, P. M., Margules, C. R. & Landsburg, J. J. 1989. Global climate change and Australia: effects on renewable natural resources. In: Global climatic change-issues for Australia, Papers presented at the first meeting of the Prime Minister's Science Council 6 October 1989, pp. 31–76, Australian Government Publishing Service Press, Canberra.

    Google Scholar 

  • Webb, E. K., Pearman, G. I. & Leuning, R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 106: 85–100.

    Google Scholar 

  • Wesely, M. L., Lenschow, D. H. & Denmead, O. T. 1989. Flux measurement techniques. In: Lenschow, D. H. & Hicks, B. B. (eds.), Global tropospheric chemistry-chemical fluxes in the global atmosphere, pp. 31–46. National Center for Atmospheric Research, Boulder.

    Google Scholar 

  • Wong, S. C. & Dunin, F. X. 1987. Photosynthesis and transpiration of trees in a Eucalypt forest stand. Aust. J. Plant Physiol. 14: 619–632.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denmead, O.T. Sources and sinks of greenhouse gases in the soil-plant environment. Vegetatio 91, 73–86 (1991). https://doi.org/10.1007/BF00036049

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00036049

Keywords

Navigation