Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley

Summary

Under drought conditions seminal roots may be more important than nodal roots and plants often reach maturity growing with their seminal roots only. This study was conducted to assess the differences, at an early stage of development, for seminal root characteristics and coleoptile length in three groups of barley germplasm: H. spontaneum, landraces, and modern cultivars. H. spontaneum had an average of three seminal root axes, always less than modern varieties and landraces, intermediate maximum seminal root length, and total root length similar to that of modern germplasm. Landraces did not differ from modern cultivars for number of seminal root axes, but they had the longest seminal root system. Modern cultivars had several short seminal roots. The results suggest that landraces have a more vigorous seminal root system than modern cultivars. Both landraces and H. spontaneum are important genetic resources which may contribute to specific adaptation of barley to moisture-stressed environments.

This is a preview of subscription content, access via your institution.

References

  1. Acevedo, E. & I. Naji, 1987. Variation in coleoptile length of barley, durum wheat and bread wheat genotypes. p. 153–156. In: Cereal Improvement Program. Annual Report for 1986. ICARDA, Aleppo, Syria.

    Google Scholar 

  2. Belford, R.K., B. Klepper & R.W. Rickman, 1987. Studies of intact shoot-root systems of field-grown winter wheat. II. Root and shoot developmental patterns as related to nitrogen fertilizer. Agron. J. 79: 310–319.

    Google Scholar 

  3. Briggs, D.E., 1978. Barley. Chapman and Hall Ltd., London, UK.

    Google Scholar 

  4. Boyer, J.S. & H.G. McPherson, 1975. Physiology of water deficits in cereal crops. Adv. Agron. 27: 1–23.

    Google Scholar 

  5. Ceccarelli, S., 1989. Increasing productivity in unfavourable conditions: philosophies, strategies, methodologies. p. 167–176. In: U. Leone, G. Rialdi & R. Vanore (Eds). Advanced Technologies for Increased Agricultural Production. CNR, Rome, Italy.

    Google Scholar 

  6. Ceccarelli, S. & S. Grando, 1987. Diversity for morphological and agronomic characters in Hordeum vulgare ssp. spontaneum C. Koch. Genet. Agr. 41: 131–142.

    Google Scholar 

  7. Ceccarelli, S., S. Grando & J.A.G. van Leur, 1987. Genetic diversity in barley landraces from Syria and Jordan. Euphytica 36: 389–405.

    Google Scholar 

  8. Ceccarelli, S., E. Acevedo & S. Grando, 1991. Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes. Euphytica 56: 169–185.

    Google Scholar 

  9. Ceccarelli, S. & S. Grando, 1991. Environment of selection and type of germplasm in barley breeding for low-yielding conditions. Euphytica 57: 207–219.

    Google Scholar 

  10. Górny, A.G., 1992. Genetic variation of the root system in spring barley and oat. Treatises and Monographs No. 1, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland.

    Google Scholar 

  11. Gómy, A.G. & H. Patyna, 1984. The development of the root system in seven spring barley varieties under high and low soil irrigation levels. Z. Acker-und Pflanzenbau 153: 264–273.

    Google Scholar 

  12. Grando, S., 1986. Studio della variabilità in popolazioni mediterranee, coltivate e spontanee, di Hordeum vulgare e Hordeum spontaneum. PhD Thesis. University of Perugia, Italy (in Italian).

  13. Grando, S. & S. Ceccarelli, 1991. Use of H. vulgare ssp. spontaneum in barley breeding for stress conditions. p. 526–529. In: L. Munck (Ed). Barley Genetics VI, Volume I. Proceedings of the Sixth International Barley Genetics Symposium, July 22–27, 1991, Helsingborg, Sweden.

  14. Gregory, P.J., 1987. Development and growth of root systems in plant communities. p. 147–166. In: P.J. Gregory, J.V. Lake & D.A. Rose (Eds). Root Development and Function. Cambridge University Press.

  15. Hurd, E.A., 1976. Plant breeding for drought resistance. p. 317–353. In: T.T. Kozlowski (Ed). Water Deficits and Plant Growth. Vol. 4. Academic Press, New York, NY.

    Google Scholar 

  16. Jaradat, A. & M. Duwayri, 1981. effect of different moisture deficits on durum wheat seed germination and seedling growth. Cereal Res. Comm. 9(1): 55–62.

    Google Scholar 

  17. Larsson, S., 1982a. Vinterhärdighet hos höstevetesorter i Sverige genom aren. Sveriges Utsä desförenings Tidskrift 92: 109–132 (in Swedish).

    Google Scholar 

  18. Larsson, S., 1982b. A simple, rapid and nondestructive screening method useful for drought resistance breeding in oat. Z. Pflanzenzüchtg 89: 206–221.

    Google Scholar 

  19. Larsson, S. & A.G. Gómy, 1988. Grain yield and drought resistance indices of oat cultivars in field rain shelter and laboratory experiments. J. Agron. and Crop Sci. 161: 277–286.

    Google Scholar 

  20. Ludlow, M.M. & R.C. Muchow, 1988. Critical evaluation of the possibilities for modifying crops for high production per unit of precipitation. p. 179–211. In: F.R. Bidinger & C. Johansen (Eds). Drought Research Priorities for the Dryland Tropics. ICRISAT, Patancheru, India.

    Google Scholar 

  21. Myhill, R.R. & C.F. Konzak, 1967. A new technique for culturing and measuring barley seedlings. Crop Sci. 7: 275–276.

    Google Scholar 

  22. Newman, P.R. & L.E. Moser, 1988. Seedling root development and morphology of cool-season and warm-season forage grasses. Crop Sci. 28: 148–151.

    Google Scholar 

  23. Parsons, L.R., 1979. Breeding for drought resistance: what plant characteristics impart resistance? HortScience 14(5): 590–593.

    Google Scholar 

  24. Passioura, J.B., 1972. The effect of root geometry on the yield of wheat growing on stored water. Aust. J. Agric. Res. 23: 745–752.

    Google Scholar 

  25. Passioura, J.B., 1977. Grain yield, harvest index, and water use of wheat. J. Aust. Inst. Agri. Sci. 42: 117–120.

    Google Scholar 

  26. Richards, R.A. & J.B. Passioura, 1981a. Seminal root morphology and water use of wheat. I. Environmental effects. Crop Sci. 21: 249–252.

    Google Scholar 

  27. Richards, R.A. & J.B. Passioura, 1981b. Seminal root morphology and water use of wheat. II. Genetic variation. Crop Sci. 21: 253–255.

    Google Scholar 

  28. Robertson, B.M., J.G. Waines & B.S. Gill, 1979. Genetic variability for seedling root numbers in wild and domesticated wheat. Crop Sci. 19: 843–847.

    Google Scholar 

  29. Troughton, A., 1962. The roots of temperate cereals (wheat, barley, oats and rye). Mimeo Publ. 2, Commonwealth Bureau of Pasture and Field Crops, Hurley, UK.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grando, S., Ceccarelli, S. Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley. Euphytica 86, 73–80 (1995). https://doi.org/10.1007/BF00035941

Download citation

Key words

  • barley
  • seminal roots
  • coleoptile length
  • Hordeum vulgare ssp. spontaneum
  • landraces