Skip to main content
Log in

Applications of spectral hole burning spectroscopies to antenna and reaction center complexes

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The underlying principles of spectral hole burning spectroscopies and the theory for hole profiles are reviewed and illustrated with calculated spectra. The methodology by which the dependence of the overall hole profile on burn wavelength can be used to reveal the contributions from site inhomogeneous broadening and various homogeneous broadening contributions to the broad Qy-absorption bands of cofactors is emphasized. Applications to the primary electron donor states of the reaction centers of purple bacteria and Photosystems I and II of green plants are discussed. The antenna (light harvesting) complexes considered include B800–B850 and B875 of Rhodobacter sphaeroides and the base-plate complex of Prosthecochloris aestuarii with particular attention being given to excitonic interactions and level structure. The data presented show that spectral hole burning is a generally applicable low temperature approach for the study of excited state electronic and vibrational (intramolecular, phonon) structures, structural heterogeneity and excited state lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen JP, Feher G Yeates TO, Rees DC, Deisenhofer J, Michel H and Huber R (1986) Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by X-ray diffraction. Proc Natl Acad Sci (USA) 83: 8589–8593

    Google Scholar 

  • Allen JP, Feher G and Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors. Proc Natl Acad Sci (USA) 84: 5730–5734

    Google Scholar 

  • Beckman RL, Hayes JM and Small GJ (1977) Neat and mixed crystal and glass optical spectra of the Anthracene-Trinitrobenzene complex. Chem Phys 21: 135–144

    Google Scholar 

  • Berg M, Walsh CA, Narasimhan LR, Littau KA and Fayer MD (1988) Dynamics in low temperature glasses: theory and experiments on optical dephasing, spectral diffusion, and hydrogen tunneling. J Chem Phys 88: 1564–1587

    Google Scholar 

  • Bergstrom H, Sundstrom V, vanGrondelle R, Akesson E and Gillbro T (1986) Energy transfer within the isolated light-harvesting B800–850 pigment-protein complex of Rhodobacter sphaeroides. Biochim Biophys Acta 852: 279–287

    Google Scholar 

  • Bergstrom H, Sundstrom V, vanGrondelle R, Gillbro T and Cogdell RJ (1988) Energy transfer dynamics of isolated B800–850 and B800–820 pigment protein complexes of Rhodobacter sphaeroides and Rhodopseudomonas acidophila. Biochim Biophys Acta 936: 90–98

    Google Scholar 

  • Bixon M and Jortner J (1982) Quantum effects on electron-transfer processes. Faraday Discuss Chem Soc 74: 17–29

    Google Scholar 

  • Bixon M and Jortner J (1989) Activationless and pseudoactivationless primary electron transfer in photosynthetic bacterial reaction centers. Chem Phys Lett 159: 17–20

    Google Scholar 

  • Boxer SG, Lockhart DJ and Middendorf TR (1986a) Photochemical holeburning in photosynthetic reaction centers. Chem Phys Lett 123: 476–482

    Google Scholar 

  • Boxer SG, Middendorf TR and Lockhart DJ (1986b) Reversible photochemical holeburning in Rhodopseudomonas viridis reaction centers. FEBS Lett 200: 237–241

    Google Scholar 

  • Breton J and Nabedryk E (1987) Pigment and protein organization in reaction centers and Antenna complexes. In: Barber J (ed) The Light Reactions, pp 159–195. Amsterdam: Elsevier

    Google Scholar 

  • Breton J, Martin J-L, Fleming GR and Lambry J-C (1988a) Low temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers from photo-synthetic bacteria. Biochem 27: 8276–8284

    Google Scholar 

  • Breton J and Vermeglio A (eds) (1988b) The Photosynthetic Bacterial Reaction Center. New York: Plenum Press

    Google Scholar 

  • Chang CH, Tiede DM, Tang J, Smith U, Norris J and Schiffer M (1986) Structure of Rhodopseudomonas sphaeroides R-26 reaction center. FEBS Lett 205: 82–86

    Google Scholar 

  • Clayton RK and Sistrom WR (eds) (1971) The Photosynthetic Bacteria. New York: Plenum Press

    Google Scholar 

  • Craig DP and Gordon RD (1965) The crystal structure of phenanthrene and phenanthrene-d10 near 3400 A. Proc R Soc (London) A 288: 69–97

    Google Scholar 

  • Davydov AS (1971) Theory of Molecular Excitions. New York: Plenum Press

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction centers from Rhodopseudomonas viridis. J Mol Biol 180: 385–398

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of Protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature (London) 318: 618–624

    Google Scholar 

  • Dekker JP, Bowlby NR and Yocum CY (1989) Chlorophyll and cytochrome b-559 content of the photochemical reaction center of Photosystem II. FEBS Lett 254: 150–154

    Google Scholar 

  • Dissado LA (1975) Linewidths of the 3800 A singlet transitions in crystalline anthracene. Chem Phys 8: 289–303

    Google Scholar 

  • Donohoe RJ, Dyer RB, Swanson BI, Violette CA, Frank HA and Bocian DF (1990). J Am Chem Soc 112: 6716–6718

    Google Scholar 

  • Flening GR, Martin J-L and Breton J (1988) Rates of primary electron transfer in photosynthetic reaction centers and their mechanistic implications. Nature 333: 190–192

    Google Scholar 

  • Freiberg A, Godik VI, Pullerits T and Timpmann K (1988) Directed picosecond excitation transport in purple photosynthetic bacteria. Chem Phys 128: 227–235

    Google Scholar 

  • Freiberg A, Godik VI, Pullerits T and Timpmann K (1989) Picosecond dynamics of directed excitation transfer in spectrally heterogeneous light0harvesting antenna of purple bacteria. Biochim Biophys Acta 973: 93–104

    Google Scholar 

  • Friedrich J and Haarer D (1984) Photochemical hole burning: A spectroscopic study of relaxation processes in polymers and glasses. Angew Chem Int Engl Ed 23: 113–140

    Google Scholar 

  • Friesner RA and Won Y (1989a) Spectroscopy and electron transfer dynamics of the bacterial photosynthetic reaction centers. Biochim Biophys Acta 977: 99–122

    Google Scholar 

  • Friesner RA and Won Y (1989b) Photochemical charge separation in photosynthetic reaction centers. Photochem Photobiol 50: 831–839

    Google Scholar 

  • Geacintov NE and Breton J (1987) Energy transfer and fluorescence mechanism in photosynthetic membranes. In: Congor BV (ed) Critical Reviews in Plant Science, Vol 5, pp 1–44. Boca Raton: CRC Press

    Google Scholar 

  • Ghanotakis DF, dePaula PC, Demetrou DM, Bowlby NR, Petersen J, Babcock GJ and Yocum CF (1989) Isolation and characterization of the 47 kDa protein and the D1-D2-cytochrome b-559 complex. Biochim. Biophys. Acta 974: 44–53

    Google Scholar 

  • Gillie JK, Lyle PA and Small GJ (1989a) Spectral hole burning of the primary electron donor state of photosystem I. Photosynth Res 22: 233–246

    Google Scholar 

  • Gillie JK, Small GJ and Golbeck JH (1989b) Nonphotochemical holeburning of the native complex of Photosystem I (PS I-200). J Phys Chem 93: 1620–1627

    Google Scholar 

  • Govindjee (ed) (1975) Bioenergetics of Photosynthesis. New York: Academic Press

    Google Scholar 

  • Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformational and environmental effects of Bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural results. J Phys Chem (1990), submitted for publication

  • Haarer D (1974) Zero-phonon transitions and vibronic coupling in the 1:1 charge-transfer crystal Anthracenepyromellitic acid-dianhydride. Chem Phys Lett 27: 91–95

    Google Scholar 

  • Haarer D (1987) Photochemical hole-burning in electronic transition. In: Moerner WE (ed) Topic in Current Physics, Persistent Spectral Hole Burning: Science and Applications, pp 79–123. New York: Springer-Verlag

    Google Scholar 

  • Hayes JM and Small GJ (1978) Non-photochemical hole burning and impurity site relaxation processes in organic glasses, Chem Phys 27: 151–157

    Google Scholar 

  • Hayes JM and Small GJ (1986) Photochemical hole burning and strong electron phonon coupling: primary donor states of reaction centers of photosynthetic bacteria. J Phys Chem 90: 4928–4931

    Google Scholar 

  • Hayes JM, Jankowiak R and Small GJ (1987) Two-level system relaxation in amorphous solids as probed by nonphotochemical hole-burning in electronic transitions. In: Moerner WE (ed) Topics in Current Physics, Persistent Spectral Hole Burning: Science and Applications, Vol 44, pp 153–202. New York: Springer-Verlag (and references therein)

    Google Scholar 

  • Hayes JM, Gillie JK, Tang D and Small GJ (1988) Theory for spectral hole burning of the primary electron donor state of photosynthetic reaction centers. Biochim Biophys Acta 932: 287–305

    Google Scholar 

  • Hochstrasser RM (1966) Molecular Aspects of Symmetry. New York: Benjamin WA, Inc

    Google Scholar 

  • Holzapfel W, Finkele U, Kaiser W, Oesterhelt D, Scheer H, Stilz HU and Zinth W (1990) Initial electron transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci (USA) 87: 5168–5172

    Google Scholar 

  • Holzwarth AR (1989) Applications of ultrafast laser spectroscopy for the study of biological systems. Quart Rev Biophys 22: 239–326

    Google Scholar 

  • Huber DL, Broer MM and Golding (1984) Low-temperature optical dephasing of rare-earth ions in glass. Phys Rev B 52: 2281–2284

    Google Scholar 

  • Hunter CN, vanGrondelle and Olsen JD (1989) Photosynthetic antenna proteins: 100 ps before photochemistry starts. Trends Biochem Sci 14: 72–76

    Google Scholar 

  • Jankowiak R, Shu L, Kenney M and Small GJ (1987a) Dispersive kinetic processes, optical linewidths and dephasing in amorphous solids. J Lumin 36: 293–305

    Google Scholar 

  • Jankowiak R and Small GJ (1987b) Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures. Science 237: 618–625

    Google Scholar 

  • Jankowiak R, Tang D and Small GJ (1989) Transient and persistent hole-burning of the reaction center of Photosystem II. J Phys Chem 93: 1649–1654

    Google Scholar 

  • Johnson SG and Small GJ (1989a) Spectral hole burning of a strongly exciton coupled Bacteriochlorophyll a antenna complex. Chem Phys Lett 155: 371–375

    Google Scholar 

  • Johnson SG, Tang D, Jankowiak, R, Hayes JM and Small GJ (1989b) Spectral hole burning: A window on energy transfer in photosynthetic units. In: Fiala J and Pokorny J (eds) Proceedings of VIth International conference on Energy and Electron Transfer Prague: Charles University

  • Johnson SG, Tang D, Jankowiak R, Hayes JM, Small GJ and Tiede DM (1989c) Structure and marker mode of the primary electron donor state absorption of photosynthetic bacteria: Hole-burned spectra. J Phys Chem 93: 5953–5957

    Google Scholar 

  • Johnson SG, Tang D, Jankowiak R, Hayes JM, Small GJ and Tiede DM (1990) Primary donor state mode structure and energy transfer in bacterial reaction centers. J Phys Chem 94: 5849–5855

    Google Scholar 

  • Johnson SG and Small GJ (1991a) Excited state structure and energy transfer dynamics of the Bacteriochlorophyll a antenna complex form Prosthecochloris aestuarii. J Phys Chem 95: 471–479

    Google Scholar 

  • Johnson SG, Lee I-J and Small GJ (1991b) Solid state spectral line narrowing spectroscopies in: Scheer H (ed) Chlorophylls, pp 739–768. CRC Press, Boca Raton

    Google Scholar 

  • Jortner J (1980) Dynamics of electron transfer in bacterial photosynthesis. Biochim Biophys Acta 594: 193–230

    Google Scholar 

  • Jortner J and Pullman B (eds) (1990) Perspectives in Photosynthesis. Dordrecht: Kluwer Academic Press

    Google Scholar 

  • Kenney MJ, Jankowiak RJ and Small GJ (1990) Dispersive kinetics of nonphotochemical hole growth for Oxazine 720 in glycerol, polyvinyl alcohol and their deuterated analogues. Chem Phys 146: 47–61

    Google Scholar 

  • Kirmaier C and Holten D (1987) Primary photochemistry of reaction centers from the photosynthetic purple bacteria. Photosynth Res 13: 225–260

    Google Scholar 

  • Kirmaier C, Holten D and Parson WW (1985) Temperature and detection-wavelength dependence of the picosecond electron transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in primary charge separation processes. Biochim Biophys Acta 810: 33–48

    Google Scholar 

  • Knox RS (1986) Trapping events in light-harvesting assemblies, In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, Vol 19, pp 286–298. Springer-Verlag, Berlin

    Google Scholar 

  • Kobayashi M, Maeda H, Watanabe T, Nakane H and Satoh K (1990) Chlorophyll a and β-carotene content in the d1/d2/cytochrome b-559 reaction center complex from spinach. FEBS Lett 260: 138–140

    Google Scholar 

  • Kramer HJM, vanGrondelle R, Hunter CM, Westerhuis WHJ and Amesz J (1984) Pigment organization of the B800–850 antenna complex of Rhodobacter sphaeroides. Biochim Biophys Acta 765: 156–165

    Google Scholar 

  • Lee I-J, Hayes JM and Small GJ (1989) Hole and anti-hole profiles in nonphotochemical holeburned spectra. J Chem Phys 91: 3463–3469

    Google Scholar 

  • Levenson MD and Kano S (1988) Introduction to nonlinear laser spectroscopy (Quantum Electronics-Principles and Applications). Boston: Academic Press

    Google Scholar 

  • Loach PA, Parkes PS, Miller JF, Hinchigeri S and Callahan PM (1985) Structure-function relationships of the bacteriochlorophyll-protein light-harvesting complex of Rhodospirillum rubrum, In: Steinback KE, Bonitz S, Arntzen CJ and Bogorad L (eds) Molecular Biology of the Photosynthetic Apparatus, pp 197–209. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Lockhart DJ and Boxer SG (1988) Stark effect spectroscopy of Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers. Proc Nat Acad Sci (USA) 85: 107–111

    Google Scholar 

  • Lockhart DJ, Kirmaier C, Holten D and Boxer SG (1990) Electric field effects on the initial electron transfer kinetics in bacterial photosynthetic reaction centers. J Phys Chem 94: 6987–6995

    Google Scholar 

  • Lösche M, Feher G and Okamura MY (1987) The Stark effect in reaction centers from Rhodobacter sphaeroides R-26 and Rhodopseudomonas viridis. Proc Nat Acad Sci (USA) 84: 7537–7541

    Google Scholar 

  • Lösche M, Feher G and Okamura MY (1988) The Stark effect in photosynthetic reaction centers from Rhodobacter sphaeroides R-26, Rhodopseudomonas viridis and the D1D2 complex of Photosystem II from spinach. In: Breton J and Vermeglis A (eds) The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, pp 151–164. Plenum Press, New York

    Google Scholar 

  • Lyle PA and Small GJ (1991) unpublished results

  • Lyo SK (1986) Dynamical theory of optical linewidths in glasses. In: Zschokke I (ed) Optical Spectroscopy of Glasses, pp 1–21 (and references therein)

  • Matthews BW and Fenna RE (1980) Structure of a green bacteriochlorophyll protein. Acc Chem Res 13: 309–317

    Google Scholar 

  • Matthews BW, Fenna RE, Bolognesi MC, Schmid MF and Olson JM (1979) Structure of Bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J Mol Biol 131: 259–285

    Google Scholar 

  • McTavish H, Picorel R and Seibert M (1989) Stabilization of isolated PS II reaction complex in the dark and in the light using polyethylene glycol. Plant Physiol 98: 452–456

    Google Scholar 

  • Meech SR, Hoff AJ and Wiersma DA (1985) Evidence for a very early intermediate in bacterial photosynthesis: A photon echo and holeburning study of the primary donor band in Rhodopseudomonas sphaeroides. Chem Phys Lett 121: 287–292

    Google Scholar 

  • Michel-Beyerle ME (ed) (1985) Antennas and Reaction Centers of Photosynthetic Bacteria. Springer-Verlag: Berlin

    Google Scholar 

  • Michel H and Deisenhofer J (1986a) X-ray diffraction studies on a crystalline bacterial photosynthetic reaction center. A progress report and conclusions on the structure of Photosystem II reaction centers. In: Staehelin AC and Arntzen CJ (eds) Encyclopedia of Plant Physiology: Photosynthesis III pp 371–381. Springer Verlag, Berlin

    Google Scholar 

  • Michel H, Epp O and Deisenhofer J (1986b) Pigment-protein interactions in the photosynthetic reaction center from Rhodopseudomonas viridis. EMBO J 5: 2445–2451

    Google Scholar 

  • Moerner WE (ed) (1987) Topics in Current Physics, Persistent Spectral Hole Burning: Science and Applications. Vol 44. Springer-Verlag, New York

    Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci (USA) 84: 109–112

    Google Scholar 

  • Narasimhan LR, Littau KA, Pack DW, Bai YS, Elschner A and Fayer MD (1990) Probing organic glasses at low temperature with variable time scale optical dephasing experiments. Chem Rev 90: 439–457

    Google Scholar 

  • Norris JR and Schiffer M (1990) Photosynthetic reaction centers in bacteria. Chem Engr News 68: 22–37

    Google Scholar 

  • Ogrodnik A, Ebert U, Heckmann R, Kappl M, Feick R and Michel-Beyerle ME (1991) Excitation dichroism of electric field modulated fluorescence yield for the identification of primary electron acceptor in photosynthetic reaction center. J Phys Chem 95: 2036–2041

    Google Scholar 

  • Okamura MY, Satoh K, Issacson RA and Feher G (1986) Evidence for primary charge separation in D1D2 complex of Photosystem II from spinach: EPR of the triplet state. In: Biggins J (ed) Progress in Photosynthesis Research, Vol I, pp 379–381. Martius Nijhoff, Boston

    Google Scholar 

  • Pearlstein RM (1982) Chlorophyll singlet excitons. In: Govindjee (ed) Photosynthesis: Energy Conversion by Plants and Bacteria, pp 293–330. Academic Press, New York

    Google Scholar 

  • Pearlstein RM (1988) In: Scheer H and Schneider S (eds) Photosynthetic Light Harvesting Systems, pp 555. De Gruyter, Berlin

    Google Scholar 

  • Pearlstein RM and Hemenger RP (1978) Bacteriochlorophyll electronic transition moment directions in Bacteriochlorophyll a-protein. Proc Natl Acad Sci USA 75: 4920–4924

    Google Scholar 

  • Pearlstein RM and Zuber H (1985) Excition state and energy transfer in bacterial membranes: The role of pigmentprotein cyclic unit structures. In: Michel-Beyerle ME (ed) Springer Series in Chemical Physics 42: Antennas and Reaction Centers of Photosynthetic Bacteria, ed. pp 53–61 Springer-Verlag, Berlin

    Google Scholar 

  • Port H, Rund D, Small GJ and Yakhot V (1979) The exciton-phonon interaction for triplet exciton bands of organic solids: An experimental and theoretical study. Chem Phys 39: 175–188

    Google Scholar 

  • Reddy NRS and Small GJ (1991) Hole burning as a probe of exciton bandwidths in amorphous solids. J Chem Phys 94: 7545–7546

    Google Scholar 

  • Reddy NRS, Small GJ, Seibert M and Picorel R (1991) Energy transfer dynamics of the B800–B850 antenna complex of Rhodobacter sphaeroides: A hole burning study. Chem Phys Letts 181: 391–399

    Google Scholar 

  • Renge I, Mauring K and Avarmaa R (1987) Site-selection optical spectra of bacteriochlorophyll and bacteriopheophytin in frozen solution. J Lumn 37: 207–214

    Google Scholar 

  • Robinette SC, Small GJ and Stevenson SH (1978) An optical study of the temperature dependent scattering of the a exciton (polariton) of naphthalene. J Chem Phys 68: 4790–4803

    Google Scholar 

  • SargeantIII M, Scully MO and LambJr WE (1974) Laser Physics. Addison-Wesley, Reading

    Google Scholar 

  • Scherer POJ and Fischer S (1989) Long-range electron transfer within the hexamer of the photosynthetic reaction center. Rhodopseudomonas viridis 93: 1633–1637

    Google Scholar 

  • Shu L and Small GJ (1990) On the mechanism of nonphotochemical hole burning of optical transitions in amorphous solids. Chem Phys 141: 447–455

    Google Scholar 

  • Tang D, Jankowiak R, Small GJ and Tiede DM (1989) Structured hole burned spectra of the primary donor state absorption region of Rhodopseudomonas viridis. Chem Phys 131: 99–113

    Google Scholar 

  • Tang D, Jankowiak R, Seibert M and Small GJ (1990a) Effects of detergent on the excited state structure and relaxation dynamics of the Photosystem II reaction center: A high resolution hole burning study. Photosynth Res 27: 19–29

    Google Scholar 

  • Tang D, SG, Jankowiak R, Hayes JM, Small GJ and Tiede DM (1990b) Structure and marker mode of the primary electron donor state absorption of photosynthetic bacteria: Hole-burned spectra. In: Jortner J and Pullman B (eds) Twenty Second Jerusalem Symposium Quantum chemistry and Biochemistry: Perspectives in Photosynthesis, pp 99–120. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Tang D, Jankowiak R, Seibert M, Yocum CF and Small GJ (1990c) Excited-state structure and energy-transfer dynamics of two different preparations of the reaction center of Photosystem II: A hole burning study. J Phys Chem 94: 6519–6522

    Google Scholar 

  • Trautmann JK, Shreve AP, Violette CA, Frank HA, Owens TG and Albrecht AC (1990) Femtosecond dynamics of energy transfer in B800–850 light harvesting complexes of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 215–219

    Google Scholar 

  • Tronrud DE, Schmid MF, Matthews BW (1986) Structure and X-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol 188: 443–454

    Google Scholar 

  • van derLaan H, Schmidt Th, Visschers RW, Visscher KJ, vanGrondelle R and Volker S (1990) Energy transfer in B800–850 complex of purple bacteria Rhodobacter sphaeroides: a study by spectral hole burning. Chem Phys Letts 170: 231–238

    Google Scholar 

  • vanGrondelle R (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim Biophys Acta 811: 147–195

    Google Scholar 

  • vanGrondelle R, Bergstrom H, Sundstrom V and Gillbro T (1987) Energy transfer within the Bacteriochlorophyll antenna of purple bacteria at 77K, studied by picosecond absorption recovery. Biochim Biophys Acta 894: 313–326

    Google Scholar 

  • Vermeglio A and Paillotin G (1982) Structure of Rhodopseudomonas viridis reaction centers. Absorption and photoselection at low temperature. Biochim Biophys Acta 681: 32–40

    Google Scholar 

  • Völker S (1989) Structured hole-burning in crystalline and amorphous organic solids. In: Funfschilling J (ed) Molecular Excited States, Optical relaxation processes at low temperatures, pp 113–242, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Walsh CA, Berg M, Narasimhan LR and Fayer MD (1986) Optical dephasing of chromophores in an organic glass: Picosecond photon echo and hole burning experiments. Chem Phys Lett 130: 6–11

    Google Scholar 

  • Walsh CA, Berg M, Narasimhan LR and Fayer MD (1987a) Probing intermolecular interactions with picosecond photon echo experiments. Accounts Chem Res 20: 120–126

    Google Scholar 

  • Walsh CA, Berg M, Narasimhan LR and Fayer MD (1987b) A picosecond photon echo study of a chromophore in an organic glass: Temperature dependence and comparison to non-photochemical holeburning. J Chem Phys 86: 77–87

    Google Scholar 

  • Warshel A and Parson WW (1987) Spectroscopic properties of photosynthetic reaction centers I. Theory. J Am Chem Soc 109: 6143–6152

    Google Scholar 

  • Wasielewski MR, DG, Govindjee, Preston C and Seibert M (1989a) Determination of the primary charge separation rate in photosynthetic reaction center at 15 K. Photosynth Res 22: 89–99

    Google Scholar 

  • Wasielewski MR, Johnson DG, Seibert M and Govindjee (1989b) Determination of the primary charge separation rate in isolated Photosystem II reaction centers with 500 fs time resolution. Proc Natl Acad Sci (USA) 86: 524–528

    Google Scholar 

  • Whitten WB, Olson JM, Pearlstein RM (1980) Seven-fold exciton splitting of the 810-nm band in Bacteriochlorophyll a-proteins from green photosynthetic bacteria. Biochim Biophys Acta 591: 203–207

    Google Scholar 

  • Won Y and Friesner RA (1987) Simulation of photochemical hole-burning experiments on photosynthetic reaction centers. J Proc Natl Acad Sci (USA) 84: 5511–5515

    Google Scholar 

  • Won Y and Friesner RA (1988a) Theoretical studies of photochemical holeburning in photosynthetic reaction centers. J Phys Chem 92: 2214–2219

    Google Scholar 

  • Won Y and Friesner RA (Comment) (1988b) Theoretical studies of photochemical holeburning in bacterial reaction centers. J Phys Chem 93: 1007

    Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobacter sphaeroides R-26 and 2.4.1: Protein-cofactor (bacteriochlorophyll, bacteriopheophytin and carotenoid) interactions. Proc Natl Acad Sci (USA) 85: 7993–7997

    Google Scholar 

  • Zuber H (1985a) Structure and function of light-harvesting complexes and their polypeptides. Photochem Photobiol 42: 821–844

    Google Scholar 

  • Zuber H, Sidler W, Füglistaller P, Brunisholz R and Theiler R (1985b) Structural studies on the light-harvesting polypeptides from Cyanobacterial and Bacteria. In: Steinback KE, Bonitz S, Arntzen CJ and Bogorad L (eds) Molecular Biology of the Photosynthetic Apparatus, pp 183–195. Cold Spring Harbor Laboratory, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

William E. Catron Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, N.R.S., Lyle, P.A. & Small, G.J. Applications of spectral hole burning spectroscopies to antenna and reaction center complexes. Photosynth Res 31, 167–194 (1992). https://doi.org/10.1007/BF00035536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035536

Key words

Navigation