Skip to main content
Log in

Leaf life span of floating-leaved plants

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Photosynthetic capacity of floating-leaved plants is relatively high comparable with terrestrial herbaceous plants, though floating-leaved plants have a much smaller biomass with a leaf area index seldom exceeding 2m2m-2. Their rather small biomass accumulation is related to higher turnover of leaf biomass or shorter leaf life span. Life span of floating leaves reported in the literature ranged mostly from 13 to 35 days, shorter than that of any other groups of herbaceous macrophytes. Floating-leaved plants are known to show considerably high plasticity in their leaf form. Leaf life span could be prolonged for Nymphoides peltata (Gmel.) O. Kuntze grown in a terrestrial environment and for emergent leaves of Nelumbo nucifera Gaertn. Their short leaf life span seems to be closely related to the fact that old leaves covered by newly formed ones are inevitably compelled to be submerged and lose their function as a photosynthetic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LAI:

leaf area index

PFD:

photosynthetic photon flux density

References

  • Adams, M. S. & McCracken, M. D. 1974. Seasonal production of the Myriophyllum component of the littoral of Lake Wingra, Wisconsin. J. Ecol. 62: 457–465.

    Google Scholar 

  • Aioi, K. 1980. Seasonal changes in the standing crop of eelgrass (Zostera marina L.) in Odawa Bay, Central Japan. Aquat. Bot. 8: 343–354.

    Google Scholar 

  • Ambasht, R. S. 1971. Ecosystem study of a tropical pond in relation to primary production of different vegetational zones. Hidrobiol. 12: 57–61.

    Google Scholar 

  • Ambasht, R. S. & Ram, K. 1976. Stratified primary productive structure of certain macrophytic weeds in a large Indian lake. In: C. K. Varshney & J. Rzóska (eds), Aquatic weeds in South East Asia. Dr. W. Junk, The Hague.

    Google Scholar 

  • Aramaki, M., Tsuchiya, T. & Iwaki, H. 1989. Seasonal changes in photosynthesis and biomass of submerged leaves of Nuphar japonica at Takahama-iri Bay in Lake Kasumigaura. Proc. Conf. Limnol. Stud. Kasumigaura Water. Res. Stn. Natl. Inst. Environ. Stud. 4: 87–99. (in Japanese).

    Google Scholar 

  • Armstrong, J. & Armstrong, W. 1991. A through-flow in Phragmites australis (Cav.) Trin. ex Steud. Aquat. Bot. 39: 75–88.

    Google Scholar 

  • Bay, D. 1984. A field study of the growth dynamics and productivity of Posidonia oeceania (L.) Delile in Calvi Bay, Corsica. Aquat. Bot. 20: 43–64.

    Google Scholar 

  • Best, E. P. H. & Dassen, J. H. A. 1987. A seasonal study of growth characteristics and the levels of carbohydrates and proteins in Elodea Nuttallii, Polygonum amphibium and Phragmites australis. Aquat. Bot. 28: 353–372.

    Google Scholar 

  • Boyd, C. E. & Scarsbrook, E. 1975. Influence of nutrient additions and initial density of plants on production of waterhyacinth Eichhornia crassipes. Aquat. Bot. 1: 253–261.

    Google Scholar 

  • Brock, Th. C. M. 1984. Aspects of the decomposition of Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae). Aquat. Bot. 19: 131–156.

    Google Scholar 

  • Brock, Th. C. M., Arts, G. H. P., Goossen, I. L. M. & Rutenfrans, A. H. M. 1983. Structure and annual biomass production of Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae). Aquat. Bot. 17: 167–188.

    Google Scholar 

  • Brock, Th. C. M., De Lyon, M. J. H., Van Laar, E. M. J. M. & Van Loon, E. M. M. 1985. Field studies on the breakdown of Nuphar lutea (L.) SM. (Nymphaeaceae), and comparison of three mathematical models for organic weight loss. Aquat. Bot. 21: 1–22.

    Google Scholar 

  • Brock, Th. C. M., van der Velde, G. & van de Steeg, H. M. 1987. The effects of extreme water level fluctuations on the wetland vegetation of a nymphaeid-dominated oxbow lake in The Netherlands. Arch. Hydrobiol. Beih. 27: 57–73.

    Google Scholar 

  • Bulthuis, D. A. & Woelkerling, Wm. J. 1983. Seasonal variation in standing crop, density and leaf growth rate of the seagrass, Heterozostera tasmanica, in western port and Port Phillip Bay, Victoria, Australia. Aquat. Bot. 16: 111–136.

    Google Scholar 

  • Center, T. D. & Spencer, N. R. 1981. The phenology and growth of water hyacinth (Eichhornia crassipes Mart.) Solms) in a eutrophic north-central Florida lake. Aquat. Bot. 10: 1–32.

    Google Scholar 

  • Center, T. D. & Van, T. K. 1989. Alternation of water hyacinth (Eichhornia crassipes (Mart.) Solms) leaf dynamics and phytochemistry by insect damage and plant density. Aquat. Bot. 35: 181–195.

    Google Scholar 

  • Chabot, B. F. & Hicks, D. J. 1982. The ecology of leaf life span. Ann. Rev. Ecol. Syst. 13: 229–259.

    Google Scholar 

  • Cook, C. D. K. & Lüönd, R. 1982. A revision of the genus Hydrocharis (Hydrocharitaceae). Aquat. Bot. 14: 177–204.

    Google Scholar 

  • Dacey, J. W. H. 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Sci. 210: 1017–1019.

    Google Scholar 

  • De Wit, H. C. D. 1964. Aquarium plants. Blanford Press, London.

    Google Scholar 

  • Dykyjová, D. 1980. Production ecology of Acorus calamus. Folia Geobot. Phytotax., Praha 15: 29–57.

    Google Scholar 

  • Dykyjová, D. & Hradecká, D. 1976. Production ecology of Phragmites communis. 1. relations of two ecotypes to the microclimate and nutrient conditions of habitat. Folia Geobot. Phytotax., Praha 11: 23–61.

    Google Scholar 

  • Estacion, J. S. & Fortes, M. D. 1988. Growth rates and primary production of Enhalus acroides (L.f.) Royle from Lagit North Basis Bay, The Philippines. Aquat. Bot. 29: 347–356.

    Google Scholar 

  • Esteves, F. A. 1979. Die Bedeutung der aquatischen Makrophyten für den Stoffhaushalt des Schöhsees. I. Die Produktion an Biomasse. Arch. Hydrobiol./Suppl. 57: 117–143.

    Google Scholar 

  • Friday, L. E. 1989. Rapid turnover of traps in Utricularia vulgaris L. Oecologia 80: 272–277.

    Google Scholar 

  • Fukai, S. & Silsburg, J. 1976. Responses of subterranean clover communities to temperature. Part 1. Dry matter production and plant morphogenesis. Aust. J. Plant Physiol. 3: 527–544.

    Google Scholar 

  • Grosse, W. & Mevi-Schutz, J. 1987. A beneficial gas transport system in Nymphoides peltata. Amer. J. Bot. 74: 947–952.

    Google Scholar 

  • Grosse, W., Buchel, H. B. & Tiebel, H. 1991. Pressurized ventilation in wetland plants. Aquat. Bot. 39: 89–98.

    Google Scholar 

  • Hall, J. B. & Okali, D. U. U. 1974. Phenology and productivity of Pista stratiotes L. on the Volta Lake, Ghana. J. Appl. Ecol. 11: 709–726.

    Google Scholar 

  • Hammer, D. A. (ed.) 1989. Constructed wetlands for wastewater treatment: Municipal, industrial and agricultural. Proc. 1st Int. Conf. Constructed Wetlands for Wastewater Treatment. Lewis Publishers, Chelsea.

    Google Scholar 

  • Ho, Y. B. 1979. Shoot development and production studies of Phragmites australis (Cav.) Trin. ex Steudel in Scottish lochs. Hydrobiol. 64: 215–222.

    Google Scholar 

  • Hayashi, K. 1984. Life history of annual floating-leaved plants. Iden 38(4): 6–11. (in Japanese).

    Google Scholar 

  • Hutchinson, G. E. 1975. A Treatise on Limnology. Vol. III Limnological Botany. John wiley & Sons, New York, 660 pp.

    Google Scholar 

  • Ibarra-Obando, S. E. & Huerta-Tamayo, R. 1987. Blade production of Zostera marina L. during the summer-autumn period on the Pacific coast of Mexico. Aquat. Bot. 28: 301–315.

    Google Scholar 

  • Ikusima, I. 1965. Ecological studies on the productivity of aquatic plant communities. I. Measurement of photosynthetic activity. Bot. Mag. Tokyo 78: 202–211.

    Google Scholar 

  • Ikusima, I. 1966a. Aquatic plants in Lake Biwa. In: The Research Report for Biological Resources in Lake Biwa. pp. 313–341. Kinki Branch, Min. Const., Osaka. (in Japanese).

    Google Scholar 

  • Ikusima, I. 1966b. Ecological studies on the productivity of aquatic plant communities. II. Seasonal changes in standing crop and productivity of a natural submerged community of Vallisineria denseserrulata. Bot. Mag. Tokyo 79: 7–19.

    Google Scholar 

  • Ikusima, I. 1970. Ecological studies on the productivity of aquatic plant communities. IV. Light condition and community photosynthetic production. Bot. Mag. Tokyo 83: 330–341.

    Google Scholar 

  • Ikusima, I. 1978. Primary production and population ecology of the aquatic sedge Lepironia articulata in a tropical swamp, Tasek Bera, Malaysia. Aquat. Bot. 4: 269–280.

    Google Scholar 

  • Ikusima, I. & Gentil, J. G. 1985. Macrophyte and its environment in four lakes in Rio Doce Valley. In: Y. Saijo & J. G. Tundisi (eds), Limnological studies in Central Brazil (1st report). pp. 113–125. Water Res. Inst., Nagoya Univ., Nagoya.

    Google Scholar 

  • Ikusima, I. & Gentil, J. D. 1989. Structure and biomass production of Eichhornia azurea in the Rio Doce Valley lakes. In: Y. Saijo & J. G. Tundisi (eds), Limnological studies in Rio Doce Valley Lakes, Brazil (3rd report). pp. 89–96. Water Res. Inst., Nagoya Univ., Nagoya.

    Google Scholar 

  • Jacobs, R. P. W. M. 1979. Distribution and aspects of the production and biomass of eelgrass, Zostera marina L., at Roscoff, France. Aquat. Bot. 7: 151–172.

    Google Scholar 

  • Jurik, T. W. & Chabot, B. F. 1986. Leaf dynamics and profitability in wild strawberries. Oecologia 69: 296–304.

    Google Scholar 

  • Kaul, R. B. 1976. Anatomical observations on floating leaves. Aquat. Bot. 2: 215–234.

    Google Scholar 

  • Kaul, V. 1971. Production ecology of some macrophytes of Kashimir Lakes. Hidrobiol. 12: 63–69.

    Google Scholar 

  • Kerr, E. A. & Strother, S. 1989. Seasonal changes in leaf growth rate of Zostera muelleri Irmisch ex Aschers. in south-eastern Australia. Aquat. Bot. 33: 131–140.

    Google Scholar 

  • Kikuzawa, K. 1988. Leaf survivals of tree species in deciduous broad-leaved forests. Pl. Sp. Biol. 3: 67–76.

    Google Scholar 

  • Kirkman, H., Reid, D. D. & Cook, I. H. 1982. Biomass and growth of Zostera capricorni Aschers. in Port Hacking, N.S.W., Australia. Aquat. Bot. 12: 57–67.

    Google Scholar 

  • Koidsumi, K., Sakurai, Y. & Kawashima, S. 1967. Standing crop of higher aquatic plants of Lake Suwa (Material for the limnology of Lake Suwa I). Jpn. J. Limnol. 28: 57–63. (in Japanese).

    Google Scholar 

  • Kotanen, P. & Jefferies, R. L. 1987. The leaf and shoot demography of grazed and ungrazed plants of Carex subspathacea. J. Ecol. 75: 961–975.

    Google Scholar 

  • Kunii, H. 1983. Diurnal vertical fluctuations in some water variables under the covers of two different aquatic plants, Elodea nuttallii and Trapa sp. Mem. Fac. Sci., Shimane Univ. 17: 61–69.

    Google Scholar 

  • Kunii, H. 1984. Seasonal growth and profile structure development of Elodea nuttallii (Planch.) St. John in Pond Ojagaike, Japan. Aquat. Bot. 18: 239–247.

    Google Scholar 

  • Kunii, H. 1988. Current years' flowering and seed formation in Nymphaea tetragona Georgi. Bull. Water Plant Soc. Jpn. 33/34: 56–57. (in Japanese).

    Google Scholar 

  • Kunii, H. & Aramaki, M. 1987. Leaf dynamics in Nymphaea tetragona and Brasenia schreberi. Bull. Water Plant Soc. Jpn. 29: 24–26. (in Japanese).

    Google Scholar 

  • Kurasawa, H., Okino, T. & Hayashi, H. 1979. Seasonal changes of distribution and biomass of aquatic macrophytes in Lake Suwa. (in Japanese).

  • Květ, J. 1971. Growth analysis approach to the production ecology of reedswamp plant communities. Hidrobiol. 12: 15–40.

    Google Scholar 

  • Květ, J. & Husák, S. 1978. Primary data on biomass and production estimates in typical stands of fishpond littoral plant communities. In: D. Dykyjová & J. Květ (eds), Pond littoral ecosystems. Springer-Verlag, New York.

    Google Scholar 

  • Larcher, W. 1980. Physiological plantecology. In: M. A. Biederman-Thorson, (trans, 1983), Springer-Verlag, New York.

    Google Scholar 

  • Mevi-Schutz, J. & Grosse, W. 1988. The importance of water vapour for the circulating air flow through Nelumbo nucifera. J. Exp. Bot. 39: 1231–1236.

    Google Scholar 

  • Miyaji, K. & Tagawa, H. 1979. Longevity and productivity of leaves of a cultivated annual Glycine max Merrill. I. Longevity of leaves in relation to density and sowing time. New Phytol. 82: 233–244.

    Google Scholar 

  • Moeller, R. E. 1978. Seasonal changes in biomass, tissue chemistry, and production of evergreen hydrophyte, Lobelia dortmanna. Can. J. Bot. 56: 1425–1433.

    Google Scholar 

  • Moran, R. L. 1981. Aquatic macrophytes in Lake Sangchris. Illinois Nat. History Survey Bull. 32: 394–412.

    Google Scholar 

  • Mukai, H., Aioi, K., Koike, I., Iizumi, H., Ohtsu, M. & Hattori, A. 1979. Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the Pacific coast of Japan. I. Growth analysis in spring-summer. Aquat. Bot. 7: 47–56.

    Google Scholar 

  • Mutoh, N. & Nakamura, T. 1978. Analytical studies on the growth of Miscanthus sacchariflorus (Maxim.) Bentham. 2. An autoecological study of nutrient economy of the plant. JIBP Synthesis 19: 230–237.

    Google Scholar 

  • Nohara, S. & Tsuchiya, T. 1990. Effect of water level fluctuation on growth of Nelumbo nucifera Gaertn. in Lake Kasumigaura. Japan. Ecol. Res. 5: 237–252.

    Google Scholar 

  • Oki, Y. 1982. Studies on effect of environmental factors on the growth and reproduction of Eichhornia crassipes (Mart.) Solms. Ph.D. Thesis, Kyoto University.

  • Penfound, W. T. & Earle, T. T. 1948. The biology of the waterhyacinth. Ecol. Monogr. 18: 449–472.

    Google Scholar 

  • Rai, D., Verma, P. K. & Munshi, J. D. 1980. Interactions between a floating (Trapa bispinosa) and submerged vegetation community in a fish pond of Bhagalpur. Pol. Arch. Hydrobiol. 27: 137–142.

    Google Scholar 

  • Ravera, O., Garavaglia, C. & Stella, M. 1984. The importance of the macrophytes in two lakes with different tropic degree: Lake Combabbio and Lake Monate (Province of Varese, Northern Italy). Verh. Internat. Verein. Limnol. 22: 1119–1130.

    Google Scholar 

  • Reddy, K. R. & De Busk, W. F. 1984. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: I. Water hyacinth, water lettuce, and pennywort. Econ. Bot. 38: 229–239.

    Google Scholar 

  • Reddy, K. R. & De Busk, W. F. 1985. Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: II. Azolla, duckweed, and salvinia. Econ. Bot. 39: 200–208.

    Google Scholar 

  • Rogers, K. H. & Breen, C. M. 1982. Decomposition of Potamogeton crispus L.: the effects of drying on the pattern of mass and nutrient loss. Aquat. Bot. 12: 1–12.

    Google Scholar 

  • Roman, C. T. & Able, K. W. 1988. Production ecology of eelgrass (Zostera marina L.) in a Cape Cod salt marshestuarine system, Massachusetts. Aquat. Bot. 32: 353–363.

    Google Scholar 

  • Sakurai, Y. 1981. Changes of flora, vegetation area and biomass of aquatic plants in the recent progress of eutrophication in Lake Kasumigaura. Res. Rep. Natl. Inst. Environ. Stud. 22: 229–279. (in Japanese with English abstract).

    Google Scholar 

  • Sakurai, Y., Hayashi, I., Watanabe, Y., Amashiro, S. & Ohashi, M. 1973. Aquatic plants. L. Kasumigaura. Biol. Res. Rep. Min. Constr. Jpn. 78–137. (in Japanese).

  • Sale, P. J. M. & Orr, P. T. 1986. Gas exchanges of Typha orientalis Presl. communities in artificial ponds. Aquat. Bot. 23: 329–339.

    Google Scholar 

  • Sand-Jensen, K. 1975. Biomass, net production and growth dynamics in an eelgrass (Zostera marina L.) population in Vellerup Vig, Denmark. Ophelia 14: 185–201.

    Google Scholar 

  • Sand-Jensen, K. 1977. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot. 3: 55–63.

    Google Scholar 

  • Sand-Jensen, K. & Søndergaard, M. 1978. Growth and production of isoetids in oligotrophic Lake Kalgaard, Denmark. Verh. Internat. Verein. Limmol. 20: 659–666.

    Google Scholar 

  • Schröder, P., Grosse, W. & Woermann, D. 1986. Localization of thermo-osmotically active partitions in young leaves of Nuphar lutea. J. Exp. Bot. 37: 1450–1461.

    Google Scholar 

  • Silberstein, K., Chiffings, K. & McComb, A. J. 1986. The loss of seagrass in Cockburn Sound, Western Australia. III. The effect of epiphytes on productivity of Posidonia australis Hook.f. Aquat. Bot. 24: 355–371.

    Google Scholar 

  • Sinha, A. B. & Sahai, R. 1974. Contribution to the ecology of Indian aquatics. Part 4. Rate of dry matter production of the leaves several common aquatic plants of Gorakhpur, India. Photosynthetica 8: 127–129.

    Google Scholar 

  • Smart, M. M. 1980. Annual changes of nitrogen and phosphorus in two aquatic macrophytes (Nymphaea tuberosa and Ceratophyllum demersum). Hydrobiol. 70: 31–35.

    Google Scholar 

  • Stodola, J. 1967. Encyclopedia of water plants. TFH, Crown Pub., New York.

    Google Scholar 

  • Tsuchiya, T. 1986. Growth characteristics of floating-leaved plants. Ph.D. Thesis, Tokyo Metropolitan University.

  • Tsuchiya, T. 1988. Comparative studies on the morphology and leaf life span of floating and emerged leaves of Nymphoides peltata (Gmel.) O. Kuntze. Aquat. Bot. 29: 381–386.

    Google Scholar 

  • Tsuchiya, T. 1989. Growth and biomass turnover of Hydrocharis dubia cultured under different nutrient conditions. Ecol. Res. 4: 157–183.

    Google Scholar 

  • Tsuchiya, T. & Iwaki, H. 1979. Impact of nutrient enrichment in a waterchestnut ecosystem at Takahama-iri Bay of Lake Kasumigaura, Japan. II. Role of waterchestnut in primary productivity and nutrient uptake. Water Air Soil Pollut. 12: 503–510.

    Google Scholar 

  • Tsuchiya, T. & Iwaki, H. 1983. Biomass and net primary production of a floating-leaved plant, Trapa natans, community in Lake Kasumigaura, Japan. Jpn. J. Ecol. 33: 47–54.

    Google Scholar 

  • Tsuchiya, T. & Iwaki, H. 1984. Seasonal changes in photosynthesis and primary production of a floating-leaved plant, Trapa natans L., community in Lake Kasumigaura, Japan. Jpn. J. Ecol. 34: 367–374.

    Google Scholar 

  • Tsuchiya, T., Nohara, S. & Iwaki, H. 1987. Annual and seasonal variations in biomass of a floating-leaved plant, Trapa natans L., in Takahama-iri Bay of Lake Kasumigaura, Japan. Jpn. J. Limnol. 48: S39-S44.

    Google Scholar 

  • Tsuchiya, T. & Nohara, S. 1989. Growth and life span of the leaves of Nelumbo nucifera Gaertn. in Lake Kasumigaura, Japan. Aquat. Bot. 36: 87–95.

    Google Scholar 

  • Tsuchiya, T., Nohara, S. & Iwakuma, T. 1990. Net primary production of Nymphoides peltata (Gmel.) O. Kuntze growing on sandy sediment at Edosaki-iri Bay in Lake Kasumigaura, Japan. Jpn. J. Limnol. 51: 307–312.

    Google Scholar 

  • Twilley, R. R., Blanton, L. R., Brinson, M. M. & Davis, G. J. 1985. Biomass production and nutrient cycling in aquatic macrophyte communities of the Chowan River, North Carolina. Aquat. Bot. 22: 231–252.

    Google Scholar 

  • Unni, K. S. 1984. Seasonal changes in growth rate and organic matter production of Trapa bispinosa Roxb. Trop. Ecol. 25: 125–133.

    Google Scholar 

  • van der Velde, G., Giesen, T. G. & van der Heijden, L. A. 1979. Structure, biomass and seasonal changes in biomass of Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae), a preliminary study. Aquat. Bot. 7: 279–300.

    Google Scholar 

  • Wallace, J. B. & O'Hop, J. 1985. Life on a fast pad: waterlily leaf beetle impact on water lilies. Ecol. 66: 1534–1544.

    Google Scholar 

  • Wahbeh, M. I. 1984. The growth and production of the leaves of the seagrass Halophila stipulacea (Forsk.) Achers. from Aqaba, Jordan. Aquat. Bot. 20: 33–41.

    Google Scholar 

  • Watanabe, I. & Berja, N. S. 1983. The growth of four species of Azolla as affected by temperature. Aquat. Bot. 15: 175–185.

    Google Scholar 

  • West, R. J. & Larkum, A. W. D. 1979. Leaf productivity of the seagrass, Posidonia australis, in Eastern Australian waters. Aquat. Bot. 7: 57–65.

    Google Scholar 

  • Westlake, D. F. 1975. Primary production of freshwater macrophytes. In: J. P. Cooper (ed), Photosynthesis and productivity of different environments. Cambridge University Press, Cambridge.

    Google Scholar 

  • Westlake, D. F. 1982. The primary productivity of water plants. In: J. J. Symoens, S. S. Hooper & P. Compere (eds), Studies on aquatic vascular plants. Otto Koeltz Science Publishers, Koenigstein-Ts, Germany.

    Google Scholar 

  • Wetzel, R. G. 1983. Limnology. Saunders College Publishing, Philadelphia.

    Google Scholar 

  • Whigham, D. F., McCormick, J., Good, R. E. & Simpson, R. L. 1978. Biomass and primary production in freshwater tidal wetlands of the Middle Atlantic Coast. In: R. G. Good, D. F. Whigham & R. L. Simpson (eds), Freshwater wetlands. Academic Press, New York.

    Google Scholar 

  • Whittaker, R. H. & Likens, G. E. 1975. The biosphere and man. In: H. Lieth & R. H. Whittaker (eds), Primary productivity of the biosphere. Springer-Verlag, New York.

    Google Scholar 

  • Wiggers Nielsen, L., Nielsen, K. & Sand-Jensen, K. 1985. High rates of production and mortality of submerged Sparganium emersum Rehman during its short growth season in a eutrophic Danish stream. Aquat. Bot. 22: 325–334.

    Google Scholar 

  • Woodward, R. G. 1976. Photosynthesis and expansion of leaves of soybean grown in two environments. Photosynthetica 10: 274–279.

    Google Scholar 

  • Wooten, J. W. & Dodd, J. D. 1976. Growth of water hyacinths in treated sewage effluent. Econ. Bot. 30: 29–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchiya, T. Leaf life span of floating-leaved plants. Vegetatio 97, 149–160 (1991). https://doi.org/10.1007/BF00035388

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035388

Keywords

Navigation