Skip to main content
Log in

A stochastic damage model for the rupture prediction of a multi-phase solid

Part I: Parametric studies

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, a stochastic damage model is proposed for the rupture prediction of a brittle, multi-phase material. The model, based on the macrocrack-microcrack interaction, characterizes damage by microcracking and fracture by macrocracking. The model incorporates uncertainties in locations, orientations and numbers of microcracks. Owing to the high concentration of microcracks within the frontal damage zone near the macro-tip, a higher order analysis based on traction boundary integral equations is formulated for an arbitrary array of cracks. The change of the stress intensity at the macrocrack tip by the configuration of microcracks is investigated through a parametric study. The presence of large fluctuation in the stress intensity at the macro-tip justifies the use of the statistical approach, which will be presented in a companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Neville, Engineering Fracture Mechanics 27 (1987) 143–155.

    Google Scholar 

  2. Y. Fu and A.G. Evans, Acta Metallurgica 33 (1985) 1515–1523.

    Google Scholar 

  3. E.A. Whitehurst, Monograph No. 2, American Concrete Institute, Detroit, Michigan (1966).

    Google Scholar 

  4. R. L'Hermite, RILEM Bulletin 18 (1954) 27–38.

    Google Scholar 

  5. R. Jones, British Journal of Applied Physics, London 3 (1952) 229–232.

    Google Scholar 

  6. F.O. Slate and S. Olsefski, Journal of the American Concrete Institute, Proceedings 60 (1963) 575–588.

    Google Scholar 

  7. R.G. Hoagland, G.T. Hahn and A.R. Rosenfield, Rock Mechanics 5 (1973) 77–106.

    Google Scholar 

  8. A. Hillerborg, M. Modeer and P.E. Petersson, Cement and Concrete Research 6 (1976) 773–782.

    Google Scholar 

  9. R. Ballarini, S.P. Shah and L.M. Keer, Engineering Fracture Mechanics 20 (1984) 433–445.

    Google Scholar 

  10. M. Ortiz, International Journal of Solids and Structures 24 (1988) 231–250.

    Google Scholar 

  11. R. Ballarini, Engineering Fracture Mechanics 35 (1990) 55–66.

    Google Scholar 

  12. B. Budiansky and R.J. O'Connell, International Journal of Solids and Structures 12 (1976) 81–97.

    Google Scholar 

  13. H. Horii and S. Nemat-Nasser, Journal of the Mechanics and Physics of Solids 31 (1983) 155–171.

    Google Scholar 

  14. N. Laws and J.R. Brockenbrough, International Journal of Solids and Structures 23 (1987) 1247–1268.

    Google Scholar 

  15. D. Sumarac and D. Krajcinovic, Mechanics of Materials 6 (1987) 39–52.

    Google Scholar 

  16. D. Krajcinovic and D. Fanella, Engineering Fracture Mechanics 25 (1986) 585–596.

    Google Scholar 

  17. J.W. Hutchinson, Acta Metallurgica 35 (1987) 1605–1619.

    Google Scholar 

  18. M. Ortiz and A.E. Giannakopoulos, Journal of Applied Mechanics 56 (1989) 279–283.

    Google Scholar 

  19. H. Horii and K. Sahasakmontri, Micromechanics and Inhomogeneity, G.J. Weng (ed.) Springer-Verlag, New York (1990) 137–159.

    Google Scholar 

  20. L.R.F. Rose, International Journal of Fracture Mechanics 31 (1986) 233–242.

    Google Scholar 

  21. R. Ballarini and M. Denda, International Journal of Fracture Mechanics 37 (1988) 61–71.

    Google Scholar 

  22. H. Horii and S. Nemat-Nasser, International Journal of Solids and Structures 21 (1985) 731–745.

    Google Scholar 

  23. M. Kachanov, International Journal of Fracture Mechanics 30 (1986) R65-R72.

    Google Scholar 

  24. M. Kachanov and E. Montagut, Engineering Fracture Mechanics 25 (1986) 625–636.

    Google Scholar 

  25. S.X. Gong and H. Horii, Journal of the Mechanics and Physics of Solids 37 (1989) 27–46.

    Google Scholar 

  26. M. Ruhle et al., Acta Metallurgica 35 (1987) 2701–2710.

    Google Scholar 

  27. D.J. Neville, International Journal of Fracture Mechanics 44 (1990) 79–96.

    Google Scholar 

  28. T.F. Wong, Mechanics of Materials 4 (1985) 261–276.

    Google Scholar 

  29. J.C.F. Telles, The Boundary Element Method Applied to Inelastic Problems, Lecture Notes in Engineering, 1, Springer-Verlag (1983).

  30. Y. Murakami and S. Nemat-Nasser, Engineering Fracture Mechanics 17 (1983) 193–210.

    Google Scholar 

  31. N.I. Ioakimidis, Acta Mechanica 45 (1982) 31–47.

    Google Scholar 

  32. P.A. Martin, F.J. Rizzo and I.R. Gonsalves, Mechanics Research Communications 16 (1989) 65–71.

    Google Scholar 

  33. G. Krishnasamy et al., in: Proceedings 1st Joint Japan/US Symposium on Boundary Element Method, M. Tanaka and T.A. Cruse (eds.) Tokyo, Japan (1988) 227–237.

  34. G.R. Irwin, in Handbook der Physik 79, Springer, Berlin, West Germany (1958), 551–590.

    Google Scholar 

  35. J.W. Nicholson and S.R. Mettu, Engineering Fracture Mechanics 31 (1988) 759–767.

    Google Scholar 

  36. M. Kachanov, International Journal of Solids and Structures 23 (1987) 23–43.

    Google Scholar 

  37. M. Hori and S. Nemat-Nasser, Journal of the Mechanics and Physics of Solids 35 (1987) 601–629.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lua, Y.J., Liu, W.K. & Belytschko, T. A stochastic damage model for the rupture prediction of a multi-phase solid. Int J Fract 55, 321–340 (1992). https://doi.org/10.1007/BF00035189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035189

Keywords

Navigation