Skip to main content
Log in

Stress intensity factor calculation for a modified round bend bar by 3-D finite element analysis

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Stress intensity factors were calculated for a modified round bend bar (MRBB) using 3-D finite element analysis. The results were compared with published solutions for a rectangular and round bend bars. The stress intensity values for the MRBB are between those for the two other geometries as expected. The stress intensity solutions were non-dimensionalized utilizing limit solution for short and long cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM Standards 03.01, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM Method E399-83 (1990).

  2. S.W. Freiman, in Fracture Mechanics of Ceramics 6, Plenum Press, New York (1983) 27–46.

    Google Scholar 

  3. H.G. Tattersall and G. Tappin, Journal of Materials Science 1 (1966) 296–301.

    Google Scholar 

  4. D.B. Marshall and A.G. Evans, Journal of American Ceramic Society 64 (1981) C182-C183.

    Google Scholar 

  5. P. Chantikul, G.R. Anstis, B.R. Lawn and D.B. Marshall, Journal of American Ceramic Society 64 (1981) 533–538.

    Google Scholar 

  6. R.F. Pabst, in Fracture Mechanics of Ceramics 2, Plenum Press, New York (1974) 555–565.

    Google Scholar 

  7. D. Munz, J.L. ShannonJr. and R.T. Bubsey, International Journal of Fracture Mechanics 16 (1980) R137-R141.

    Article  Google Scholar 

  8. R. Warren and B. Johanneson, Powder Metallurgy 27 (1984) 25–29.

    Google Scholar 

  9. T. Nose and T. Fujii, Journal of American Ceramic Society 71 (1988) 328–333.

    Google Scholar 

  10. J.I. Bluhm, Engineering Fracture Mechanics 7 (1975) 593–604.

    Article  Google Scholar 

  11. J.I. Bluhm, in Fracture 1977 3, Waterloo, Ontario, Canada (1977) 409–417.

  12. D.P. Clausing, International Journal of Fracture Mechanics 5 (1969) 211–227.

    Article  Google Scholar 

  13. F.I. Baratta and W.I. Dunlay, Mechanics of Materials 10 (1990) 149–159.

    Article  Google Scholar 

  14. J.H. Underwood, F.I. Baratta and J.J. Zalinka, Experimental Mechanics 31 (1990) 353–359.

    Google Scholar 

  15. P.C. Paris and G.C. Sih, in Fracture Toughness Testing and Its Applications, ASTM STP-381 (1965) 31–83.

  16. W.F. Brown, Jr. and J.E. Srawley, Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP 410, Philadelphia (1966).

  17. A.J. Bush, Experimental Mechanics 16 (1989) 249–257.

    Google Scholar 

  18. J.H. Underwood and R.L. Woodward, Experimental Mechanics 29 (1989) 166–168.

    Google Scholar 

  19. C.F. Shih, B. Moran and T. Nakamura, International Journal of Fracture 30 (1986) 79–102.

    Google Scholar 

  20. H.D. Hibbitt, B. Karlsson and E.P. Sorensen, User's Manual, Hibbitt, Karlsson and Sorensen Inc., Providence, RI (1989).

    Google Scholar 

  21. R.S. Barsoum, International Journal for Numerical Methods in Engineering 10 (1976) 25–37.

    Google Scholar 

  22. R.D. Henshell and K.G. Shaw, International Journal for Numerical Methods in Engineering 19 (1975) 495–509.

    Google Scholar 

  23. N.A.B. Yehia and M.S. Shepard, International Journal for Numerical Methods in Engineering 21 (1985) 1911–1924.

    Google Scholar 

  24. J.R. Rice and E.P. Sorensen, Journal of the Mechanics and Physics of Solids 26 (1978) 163–186.

    Article  Google Scholar 

  25. J.R. Rice, Journal of Applied Mechanics, Transaction of ASME 35 (1968) 379–386.

    Google Scholar 

  26. G.R. Irwin, in Encyclopaedia of Physics, Springer Verlag, Berlin (1957) 551–589.

    Google Scholar 

  27. H. Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, PA (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, K., Hantz, B.F. & Bar-On, I. Stress intensity factor calculation for a modified round bend bar by 3-D finite element analysis. Int J Fract 62, 163–170 (1993). https://doi.org/10.1007/BF00035160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035160

Keywords

Navigation