Skip to main content
Log in

Effective stiffness of a periodically cracked 3-D solid

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This paper studies the effective elastic stiffness of 3-D periodically cracked solids. A direct approach is used to solve the transition problem to obtain the effective stiffness from the details of the microstructure. A specific class of periodically cracked solids is then considered. The crack opening volume for these periodic configurations were obtained using a specialized Boundary Element Method (BEM). The BEM involves special techniques for evaluating finite-part integrals and for approximating the periodic Green function. Finally, results for the effective stiffness of particular configurations of periodically cracked 3-D solids are presented and compared with approximate methods. These results indicate that, in general, the crack density parameter is not sufficient to characterize a damaged solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Walsh, Journal of Geophysical Research 70 (1965) 399.

    Google Scholar 

  2. R.J. O'Connell and B. Budiansky, Journal of Geophysical Research 79 (1974) 5412.

    Google Scholar 

  3. W.R. Delameter, G. Herrmann and D.M. Barnett, Journal of Applied Mechanics 42 (1975) 74.

    Google Scholar 

  4. W.R. Delameter, G. Herrmann and D.M. Barnett, Journal of Applied Mechanics 44 (1977) 190.

    Google Scholar 

  5. B. Budiansky and R.J. O'Connell, International Journal of Solids and Structures 12 (1976) 81.

    Article  Google Scholar 

  6. R.J. O'Connell and B. Budiansky, Journal of Geophysical Research 82 (1977) 5719.

    Google Scholar 

  7. A. Hoenig, International Journal of Solids and Structures 15 (1979) 137.

    Google Scholar 

  8. M. Pian, International Journal of Engineering Science 17 (1979) 151.

    Article  Google Scholar 

  9. J.A. Hudson, Geophysical Journal, Royal Astronomical Society, London 64 (1981) 133.

    Google Scholar 

  10. H. Horii and S. Nemat-Nasser, Journal of the Mechanics and Physics of Solids 31 (1983) 155.

    Article  Google Scholar 

  11. N. Laws, G.J. Dvorak and M. Hejazi, Mechanics of Materials 2 (1983) 123.

    Article  Google Scholar 

  12. Y. Benveniste, Mechanics Research Communications 13,4 (1986) 193.

    Article  Google Scholar 

  13. J. Kameny and N.G.W. Cook, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts 23 (1986) 107.

    Article  Google Scholar 

  14. J. Aboudi, Engineering Fracture Mechanics 26 (1987) 637.

    Article  Google Scholar 

  15. Z. Hashin, Journal of Mechanics and Physics of Solids 36 (1988) 719.

    Article  Google Scholar 

  16. D.P. Blair, Engineering Fracture Mechanics 35 (1,2, 3) (1990) 447.

    Article  Google Scholar 

  17. A.T. Spathis, Engineering Fracture Mechanics 35 (1, 2, 3) (1990) 377.

    Article  Google Scholar 

  18. S. Torquato, Applied Mechanics Review 44, 2 (1991).

    Google Scholar 

  19. G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1983) 246.

  20. R. Hill, Journal of Mechanics and Physics of Solids 11 (1963) 357.

    Article  Google Scholar 

  21. L. Laws and G.J. Dvorak, International Journal of Solids and Structures 23, 9 (1987) 1269.

    Article  Google Scholar 

  22. N. Fares, Applied Mechanics Review, submitted.

  23. N. Fares and V.C. Li, International Journal for Numerical Methods in Engineering 28, 7 (1989) 1703–1713.

    Google Scholar 

  24. C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fares, N. Effective stiffness of a periodically cracked 3-D solid. Int J Fract 62, 149–162 (1993). https://doi.org/10.1007/BF00035159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035159

Keywords

Navigation