Skip to main content
Log in

Tilting cracks: the evolution of fracture surface topology in brittle solids

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

For a growing crack the conventional definitions of tilting and twisting are inadequate. New definitions are proposed, based on differential geometry, and it is shown that, in homogeneous, isotropic, brittle solids, non-planar crack growth must occur entirely by tilting movements. Examples are given of the growth of cracks on curved surfaces which illustrate that the no-twist condition produces significant constraints on the path of fracture. The development of fracture surfaces when cracks are subject to mixed-mode loading conditions are described with particular reference to the influence of mode III, twisting conditions. It is shown that the requirement that only tilting can occur leads to many characteristic fractographic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.B. Bradley and A.S. Kobayashi, Experimental Mechanics 10 (1970) 106–113.

    Google Scholar 

  2. A.S. Kobayashi and B.G. Wade, in Deformation and Fracture of High Polymers, H.H. Kausch et al. (eds), Plenum Press (1973) 487–500.

  3. M.F. Kanninen, A.R. Rosenfield and R.G. Hoagland, in Deformation and Fracture of High Polymers, H.H. Kausch et (eds), Plenum Press (1973) 471–486.

  4. K. Ravi-Chandar and W.G. Knauss, International Journal of Fracture 25 (1984) 247–262.

    Google Scholar 

  5. K. Ravi-Chandar and W.G. Knauss, International Journal of Fracture 26 (1984) 65–80.

    Google Scholar 

  6. K. Ravi-Chandar and W.G. Knauss, International Journal of Fracture 25 (1984) 141–154.

    Google Scholar 

  7. K. Ravi-Chandar and W.G. Knauss, International Journal of Fracture 25 (1984) 189–200.

    Google Scholar 

  8. J.W. Dally, W.L. Fourney and G.R. Irwin, International Journal of Fracture 27 (1985) 159–168.

    Google Scholar 

  9. T.M. Maccagno and J.F. Knott Engineering Fracture Mechanics 34 (1989) 65–86.

    Article  Google Scholar 

  10. A.A. Rubinstein, International Journal of Fracture 47 (1991) 291–305.

    Google Scholar 

  11. K. Arakawa and K. Takahashi, International Journal of Fracture 48 (1991) 103–114.

    Article  Google Scholar 

  12. N.A. Fleck, Proceedings of Royal Society London A 432 (1991) 55–76.

    Google Scholar 

  13. P.A. Wawrzynek and A.R. Ingraffea, Theoretical Applied Fracture Mechanics 8 (1987) 137–150.

    Article  Google Scholar 

  14. P. Bocca, A. Carpenteri and S. Valente, International Journal of Solid Structures 27 (1991) 1139–1153.

    Article  Google Scholar 

  15. C.de Freminville, Revue de Metallurgie 11 (1914) 971–1056.

    Google Scholar 

  16. F.W. Preston, Journal of American Ceramic Society 14 (1931) 419–427.

    Google Scholar 

  17. J.B. Murgatroyd, Journal of Society of Glass Technology 26 (1942) 155–171.

    Google Scholar 

  18. E.F. Poncelet, Journal of Society of Glass Technology 42 (1958) 279–298.

    Google Scholar 

  19. D. Purslow, Composites 17 (1986) 289–303.

    Article  Google Scholar 

  20. B.R. Lawn and T.R. Wilshaw, Fracture of Brittle Solids, Cambridge University Press, Cambridge (1975).

    Google Scholar 

  21. F. Kerkhof, in Proceedings of an International Conference on Dynamic Crack Propagation, G.C. Sih (ed.), Noordhoff International Publishing (1972) 3–35.

  22. K. Takahashi and K. Arakawa, Experimental Mechanics 27 (1987) 195–200.

    Google Scholar 

  23. K. Peter, (see [21]).

  24. F. Erdogan and G.C. Sih, Journal of Basic Engineering 85 (1963) 519–527.

    Google Scholar 

  25. K. Palaniswamy and W.G. Knauss, in Mechanics Today, S. Nemat-Nasser (ed.), Pergamon Press (1978) 87–148.

  26. G.C. Sih, International Journal of Fracture 10 (1974) 305–321.

    Google Scholar 

  27. M.M. Frocht, Photoelasticity, Vol. 1, Wiley, New York (1941).

    Google Scholar 

  28. B.R. Lawn, T.R. Wilshaw and N.E.W. Hartley, International Journal of Fracture 10 (1974) 1–16.

    Google Scholar 

  29. J.P.A. Tillett, Proceedings Physical Society B 69 (1956) 47–54.

    Article  Google Scholar 

  30. S. Tolansky and V.R. Howes, Proceedings Physical Society B 67 (1954) 467–472.

    Google Scholar 

  31. W.G. Knauss, International Journal of Fracture 6 (1970) 183–187.

    Google Scholar 

  32. E. Sommer, Engineering Fracture Mechanics 1 (1969) 539–546.

    Google Scholar 

  33. A. Smekal, Oesterreichisches Ingenieur Archiv 7 (1953) 49–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hull, D. Tilting cracks: the evolution of fracture surface topology in brittle solids. Int J Fract 62, 119–138 (1993). https://doi.org/10.1007/BF00035157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035157

Keywords

Navigation