Skip to main content
Log in

An aberrant plastid ribosomal RNA gene cluster in the root parasite Conopholis americana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The plastid ribisomal RNA (rRNA) operon of the achlorophyllous root parasite Conopholis americana was completely sequenced. Full-length rRNA genes are retained in the gene cluster, but significant divergence has occurred in the 16S, 23S and 5S genes. Both the 16S–23S intergenic spacer and the 4.5S–5S intergenic spacer have suffered substantial deletions, including the two tRNA genes typically found in prokaryotic and plastid 16S–23S spacers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audren H, Bisanz-Seyer C, Briat J-F, Mache R: Structure and transcription of the 5S rRNA gene from spinach chloroplasts. Curr Genet 12: 263–269 (1987).

    Google Scholar 

  2. Audren H, Mache R: Nucleotide sequence of the spinach 4.5S ribosomal RNA gene and of its 5′ flanking region including the 3′ end of the 23S rRNA gene. Nucl Acids Res 14: 9533 (1986).

    Google Scholar 

  3. Branlant C, Krol A, Machatt MA, Pouyet J, Ebel JP: Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucl Acids Res 9: 4303–4324 (1981).

    Google Scholar 

  4. Cronquist A. The Evolution and Classification of Flowering Plants. Houghton Mifflin Company, Boston (1968).

    Google Scholar 

  5. de Pamphilis CW, Palmer JD: Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337–339 (1990).

    Google Scholar 

  6. Dyer TA, Bedbrook JR: The organization in higher plants of the genes coding for chloroplast ribosomal RNA. In: Leaver CJ (ed) Genome Organization and Expression in Plants, pp. 305–312. NATO Advanced Studies Institute Series. Plenum Press, New York (1979).

    Google Scholar 

  7. Edwards K, Kossel H: The rRNA operon from Zea mays chloroplasts: Nucleotide sequence of the 23S rDNA and its homology with E. coli 23S rDNA. Nucl Acids Res 9: 2853–2869 (1981).

    Google Scholar 

  8. Edwards K, Bedbrook J, Dyer T, Kossel H: 4.5S rRNA from Zea mays chloroplasts shows structural homology with the 3′ end of prokaryotic 23S rRNA. Biochem Int 2: 533 (1981).

    Google Scholar 

  9. Geggenheimer P, Apirion D: Processing of prokaryotic ribonucleic acid. Microbiol Rev 45: 502–541 (1981).

    Google Scholar 

  10. Hiratsuka J, Shimada H, Whittier RF, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M: The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194 (1989).

    Google Scholar 

  11. Koch W, Edwards K, Kossel H: Sequencing of the 16S–23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two split tRNA genes. Cell 25: 203–213 (1981).

    Google Scholar 

  12. Kossel H, Natt E, Strittmatter G, Fritzsche E, Gozdzicka-Josefiak A, Przybyl D: Structure and expression of rRNA operons from plastids of higher plants. In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular Form and Function of the Plastid Genome, pp. 183–198. Plenum Press, New York (1985).

    Google Scholar 

  13. Manhart JR, Palmer JD: The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature 345: 268–270 (1990).

    Google Scholar 

  14. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  15. Margulis L: Origin of Eukaryotic Cells. Yale University Press, New Haven, CT (1970).

    Google Scholar 

  16. Massenet O, Martinez P, Seyer P, Briat J-F: Sequence organization of the chloroplast ribosomal spacer of Spinacia oleracea including the 3′ end of the 16S rRNA and the 5′ end of the 23S rRNA. Plant Mol Biol 10: 53–63 (1987).

    Google Scholar 

  17. Muller J: Fossil pollen records of extant angiosperms. Bot Rev: 1–142 (1981).

  18. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H: Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574 (1986).

    Google Scholar 

  19. Percival WC: The parasitism of Conopholis americana on Quercus borealis. Am J Bot 18: 817–837 (1931).

    Google Scholar 

  20. Sanger R, Nicklen S, Coulson A: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    Google Scholar 

  21. Schwarz Z, Kossel H: The primary structure of 16S rDBA from Zea mays chloroplast is homologous to E. coli 16S rRNA. Nature 283: 739–742 (1980).

    Google Scholar 

  22. Schwarz Z, Kossel H, Schwarz E, Bogorad L: A gene coding for tRNAVal is located near 5′ terminus of 16S rRNA gene in Zea mays chloroplast genome. Proc Natl Acad Sci USA 78: 4748–4752 (1981).

    Google Scholar 

  23. Sogin MT, Elwood HJ, Gunderson JH: Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83: 1383–1387 (1986).

    Google Scholar 

  24. Stiegler P, Carbon P, Ebel J-P, Ehresmann C: A general secondary structure model for procaryotic and eucaryotic RNAs of the small ribosomal subunits. Eur J Biochem 120: 487–495 (1981).

    Google Scholar 

  25. Strittmatter G, Kossel H: Cotranscription and processing of 23S, 4.5S and 5S rRNA in chloroplasts from Zea mays. Nucl Acids Res 12: 7633–7647 (1984).

    Google Scholar 

  26. Swofford DL: PAUP. Phylogenetic Analysis Using Parsimony, Version 2–4. Illinois Natural History Survey, Champaign (1985).

    Google Scholar 

  27. Takaiwa F, Sugiura M: Nucleotide sequence of the 4.5S and 5S ribosomal RNA genes from tobacco chloroplasts. Mol Gen Genet 180: 1–4 (1980).

    Google Scholar 

  28. Takaiwa F, Sugiura M. The complete nucleotide sequence of a 23S rRNA gene from tobacco chloroplasts. Eur J Biochem 124: 13–19 (1982).

    Google Scholar 

  29. Takaiwa F, Sugiura M: Nucleotide sequence of the 16S–23S spacer region in an rRNA gene cluster from tobacco chloroplast DNA. Nucl Acids Res 10: 2665–2676 (1982).

    Google Scholar 

  30. Tohdoh N, Sugiura M: The complete nucleotide sequence of the 16S ribosomal RNA gene from tobacco chloroplasts. Gene 17: 213–218 (1982).

    Google Scholar 

  31. von Allmen J-M, Stutz E: The soybean chloroplast genome: nucleotide sequence of a region containing tRNA-Val (GAC) and 16S rRNA gene. Nucl Acids Res 16: 1200 (1988).

    Google Scholar 

  32. Wimpee CF, Wrobel RL, Garvin DK: A divergent plastid genome in Conopholis americana, an achlorophyllous parasitic plant. Plant Mol Biol 17: 161–166 (1991).

    Google Scholar 

  33. Zimmer FA, Hamby RK, Arnold ML, Leblanc DA, Theriot EC: Ribosomal RNA phylogenies and flowering plant evolution. In: Fernholm B, Bremer K, Jornvall H (eds) The Hierarchy of Life, pp. 205–214. Elsevier Science Publishers, Amsterdam (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimpee, C.F., Morgan, R. & Wrobel, R. An aberrant plastid ribosomal RNA gene cluster in the root parasite Conopholis americana . Plant Mol Biol 18, 275–285 (1992). https://doi.org/10.1007/BF00034955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034955

Key words

Navigation