Skip to main content
Log in

Energy migration in purple bacteria. The criterion for discrimination between migration- and trapping-limited photosynthetic units

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A criterion has been evolved for distinguishing between migration- and trapping-limited photosynthetic units (PSUs). Its application to purple bacteria has proved their PSUs to be of trapping-limited type. It means that any improvements of the molecular structure of their PSUs cannot noticeably increase the overall rate constant of excitation delivery from antenna BChls to reaction centers (RCs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PSUs:

photosynthetic units

RCs:

reaction centers

Chl:

chlorophyll

BChl:

bacteriochlorophyll

R:

intermolecular distance, Φe

ΦΣ :

quantum yields of the primary excitation trapping and wasteful losses respectively

τfl :

excitation and fluorescence lifetimes respectively

References

  • Abdourakhmanov IA, Danielius RV and Razjivin AP (1989) FEBS Lett 245: 47–50

    Google Scholar 

  • Borisov AY (1978) In: Clayton and Sistrom (eds) The Photosynthetic Bacteria, pp 323–331. New York-London: Plenum Press

    Google Scholar 

  • Borisov AY (1986) Molec Biol (Soviet) V.20. English translations pp 725–742

    Google Scholar 

  • Borisov AY (1987) Biophysica (Soviet) V.32. English translations pp 1139–1157

    Google Scholar 

  • Borisov AY and Godik VI (1970) Biochim Biophys Acta 221: 441–443

    Google Scholar 

  • Borisov AY and Godik VI (1972) J Bioenerget 3: 515–523

    Google Scholar 

  • Borisov AY, Freiberg AM, Godik VI, Timpmann KE and Rebane KK (1985) Biochim Biophys Acta 807: 221–231

    Google Scholar 

  • Campillo AJ, Hyer HC, Monger TG, Parson WW and Shapiro SL (1977) Proc Nat Acad Sci USA 74: 1997–2001

    Google Scholar 

  • Clayton RK (1980) Photosynthesis. Cambridge-London-New York-Melbourne-Sydney: Cambridge University Press

    Google Scholar 

  • Fetisova ZG, Fok MV and Shibaeva LA (1985a) Molec Biol (Soviet) V.19, English translations, pp 802–809

  • Fetisova ZG, Fok MV and Shibaeva LA (1985b) Molec Biol (Soviet) V.19, 1202–1215

    Google Scholar 

  • Fetisova ZG, Fok MV and Shibaeva LA (1985c) Molec Biol (Soviet) V.19, 1216–1228

    Google Scholar 

  • Fetisova ZG, Borisov AY and Fok MV (1985) J Theoret Biol 112: 41–75

    Google Scholar 

  • Fok MV and Borisov AY (1981) Studia Biophysika 84: 115–124

    Google Scholar 

  • Freiberg AM, Godik VI, Kharchenko SG, Timpmann KE, Borisov AY and Rebane KK (1985) FEBS Lett 139: 341–344

    Google Scholar 

  • Freiberg AM, Godik VI and Timpmann KE (1984) In: C. Sybesma (ed) Advances Photosynth Research, V.1, 45–48. Martinus Nijhoff Publ

  • Godik VI and Borisov AY (1977) FEBS Lett 82: 355–358

    Google Scholar 

  • Grondell Rvan (1985) Biochim Biophys Acta 811: 147–195

    Google Scholar 

  • Kirmaier C, Holten D, Bylina E and Youvan C (1988) Proc Nat Acad Sci USA 85: 7562–7566

    Google Scholar 

  • Knox RS (1977) In: JBarber (ed) Primary Processes of Photosynthesis, V.2, 55–97. Amsterdam: Elsevier

    Google Scholar 

  • Kudzmauskas G, Valkunas L and Borisov A (1983) J Theoret Biol 105: 13–23

    Google Scholar 

  • Martin JL, Breton J, Hoff A, Migus A and Antonetti A (1986) Proc Nat Acad Sci USA 83: 957–961

    Google Scholar 

  • Miller KR (1979) Proc Nat Acad Sci USA, 76: 6415–6419

    Google Scholar 

  • Nuijn AM, Grondelle Rvan, Joppe HL, Bochove ACvan and Duysens LNM (1986) Biochim Biophys Acta 850: 286–293

    Google Scholar 

  • Paillotin G (1972) J Theoret Biol 36: 223–235

    Google Scholar 

  • Parson WW (1987) In: JAmesz (eds) Photosynthesis, pp 233–271. Amsterdam: Elsevier

    Google Scholar 

  • Paschenko VZ, Korvatovski BN, Kononenko AA, Uspenskaja T and Rubin AB (1985) FEBS Lett 191: 245–248

    Google Scholar 

  • Pearlstein RM (1982) In: Govindjee (ed) Photosynthesis: Energy Conversion by Plants and Bacteria, V.1, 293–330. Amsterdam: Academic Press

    Google Scholar 

  • Pearlstein RM (1982) Photochem Photobiol 35: 835–847

    Google Scholar 

  • Razjivin AP, Gadonas RV, Danielius RV, Borisov AY and Piskarskas AS (1982) Proc Soviet Acad Sci 264: 980–984

    Google Scholar 

  • Robinson GW (1967) Brookhaven Symp Biol N 19, 16–48. New York: Upton

    Google Scholar 

  • Sebban P, Jolchine G and Moya I (1984) Photochem Photobiol 39: 247–253

    Google Scholar 

  • Stark W, Kühlbrandt W, Wildhaber J, Wehrli E and Mühlethaler K (1984) EMBO J 3: 777–783

    Google Scholar 

  • Sundstrem V, Grondelle Rvan, Bergstrem H, Akesson E and Gilbro T (1987) Biochim Biophys Acta 851: 431–446

    Google Scholar 

  • Woodbury N, Backer J, Middendorf D and Parson WW (1986) Biochemistry 24: 7516–7521

    Google Scholar 

  • Zankel T, Reed D and Clayton RK (1974) Proc Nat Acad Sci USA 61: 1243–1249

    Google Scholar 

  • Zuber H (1987) In: JBarber (ed) Light Reactions, pp 197–250. Amsterdam: Elsevier

    Google Scholar 

  • Zuber H, Brunisholz R and Sidler W (1987) In: JAmesz (ed) Photosynthesis, pp 233–271. Amsterdam: Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.Y. Energy migration in purple bacteria. The criterion for discrimination between migration- and trapping-limited photosynthetic units. Photosynth Res 23, 283–289 (1990). https://doi.org/10.1007/BF00034858

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034858

Key words

Navigation