Skip to main content
Log in

Thermally-induced interlaminar crack-tip singularities in laminated anisotropic composites

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Thermally-induced stress singularities of an interlaminar crack in a fiber-reinforced composite laminate under a state of generalized plane deformation are examined within the framework of steady-state anisotropic thermoelasticity. The crack is assumed to be embedded within a matrix-rich interlaminar region of the composite. The Fourier integral transform technique and the flexibility/stiffness matrix method are introduced to formulate the current mixed boundary value problem. As a result, two sets of simultaneous Cauchy-type singular integral equations of the first kind are derived for the heat conduction and thermoelasticity. Within the context of linear elastic fracture mechanics, the mixed-mode thermal stress intensity factors are defined in terms of the solutions of the corresponding integral equations. Numerical results are presented, addressing the effects of laminate stacking sequence, crack location, and crack surface partial insulation on the values of thermal stress intensity factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.C. Sih, ASME Journal of Applied Mechanics 29 (1962) 587–589.

    Google Scholar 

  2. E.J. Brown and F. Erdogan, International Journal of Engineering Science 6 (1968) 517–529.

    Google Scholar 

  3. D.S. Wolf and C.T. Sun, Proceedings of an International Conference on Fracture Mechanics in Engineering Applications (1979) 767–778.

  4. A.Y. Kuo, ASME Journal of Applied Mechanics 57 (1990) 359–364.

    Google Scholar 

  5. J.R. Rice and G.C. Sih, ASME Journal of Applied Mechanics 32 (1965) 418–423.

    Google Scholar 

  6. C.J. Martin-Moran, J.R. Barber, and M. Comninou, ASME Journal of Applied Mechanics 50 (1983) 29–36.

    Google Scholar 

  7. M. Comninou, ASME Journal of Applied Mechanics 44 (1977) 631–636.

    Google Scholar 

  8. C. Atkinson and D.L. Clements, International Journal of Solids and Structures 13 (1977) 855–864.

    Google Scholar 

  9. F.A. Sturla and J.R. Barber, ASME Journal of Applied Mechanics 55 (1988) 372–376.

    Google Scholar 

  10. Y.M. Tsai, Journal of Composite Materials 18 (1984) 122–131.

    Google Scholar 

  11. D.L. Clements and T.R. Tauchert, Journal of Australian Mathematical Society 21B (1979) 243–255.

    Google Scholar 

  12. H.J. Choi and S. Thangjitham, Engineering Fracture Mechanics 43 (1992) 487–500.

    Google Scholar 

  13. S. Thangjitham and H.J. Choi, Mechanics of Materials 14 (1993) 223–238.

    Google Scholar 

  14. D.L. Clements, International Journal of Solids and Structures 19 (1983) 121–130.

    Google Scholar 

  15. S.S. Wang, ASME Journal of Applied Mechanics 47 (1980) 64–70.

    Google Scholar 

  16. H.J. Choi and S. Thangjitham, International Journal of Engineering Science 29 (1991) 819–829.

    Google Scholar 

  17. S. Thangjitham and H.J. Choi, International Journal of Solids and Structures 30 (1993) 963–980.

    Google Scholar 

  18. J.R. Barber, Journal of Thermal Stresses 3 (1980) 77–83.

    Google Scholar 

  19. S. Thangjitham and H.J. Choi, ASME Journal of Applied Mechanics 58 (1991) 1021–1027.

    Google Scholar 

  20. S.G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, Mir Publishers, Moscow (1981).

    Google Scholar 

  21. J.L. Nowinski, Theory of Thermoelasticity with Applications, Sijthoff & Noordhoff, The Netherlands (1978).

    Google Scholar 

  22. I.N. Sneddon, Fourier Transforms, McGraw-Hill Book Co., Inc., New York (1951).

    Google Scholar 

  23. N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, The Netherlands (1958).

    Google Scholar 

  24. F. Erdogan, in Mechanics Today, S. Nemat-Nasser (ed.) Pergamon Press 4 (1977) 1–86.

  25. F. Erdogan, SIAM Journal of Applied Mathematics 17 (1969) 1041–1069.

    Google Scholar 

  26. S.N. Chatterjee, in Modern Developments in Composite Materials and Structures, J.R. Vinson (ed.) ASME (1979) 1–15.

  27. E. Kausel and S.H. Seale, ASME Journal of Applied Mechanics 54 (1987) 403–408.

    Google Scholar 

  28. H.J. Choi and S. Thangjitham, Composites Science and Technology 40 (1991) 289–305.

    Google Scholar 

  29. H.J. Choi and S. Thangjitham, ASME Journal of Applied Mechanics 58 (1991) 382–387.

    Google Scholar 

  30. G.M.L. Gladwell and A.H. England, Quarterly Journal of Mechanics and Applied Mathematics 30 (1977) 175–185.

    Google Scholar 

  31. D. Broek, The Practical Use of Fracture Mechanics, Kluwer Academic Publishers, The Netherlands (1989).

    Google Scholar 

  32. C.C. Chamis, SAMPE Quarterly April (1984) 14–23.

  33. M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Functions, Dover, New York (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.J., Thangjitham, S. Thermally-induced interlaminar crack-tip singularities in laminated anisotropic composites. Int J Fract 60, 327–347 (1993). https://doi.org/10.1007/BF00034740

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034740

Keywords

Navigation