Advertisement

Euphytica

, Volume 89, Issue 2, pp 229–234 | Cite as

The use of RAPD technique for the identification and classification of Pisum sativum L. genotypes

  • Petr Samec
  • Vít Našinec
Article

Summary

The genomic DNAs of 42 Pisum sativum genotypes, representing four wild and cultivated subspecies were used as templates in RAPD reactions. Amplification with eight decamer primers generated 149 polymorphic products. Genetic similarities of RAPD profiles were estimated via a coefficient of Jaccard and then the data were processed by cluster analysis (UPGMA). Each genotype was clearly identified and separated from the others. Our results show that RAPD technology is a rapid, precise and sensitive technique for identification of pea genotypes. However, the phylogenetic relationships within the Pisum sativum, which we tested by bootstrap analysis (Wagner parsimony), must be interpreted with caution.

Key words

Cultivar identification genetic relatedness Pisum sativum RAPD pea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Botstein, D., R.L. White, M. Skolnick & R.W. Davis, 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331.Google Scholar
  2. Cooke, R.J., 1984. The characterisation and identification of crop cultivars by electrophoresis. Electrophoresis 5: 59–72.Google Scholar
  3. Dellaporta, S.L., J. Wood & J.B. Hicks, 1983. A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1: 19–21.Google Scholar
  4. Dirlewanger, E., P.G. Isaac, S. Ranade, M. Belajouza, R. Cousin & D. de Vienne, 1994. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88: 17–27.Google Scholar
  5. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.Google Scholar
  6. Felsenstein, J., 1995. PHYLIP (Phylogenetic Inference Package) version 3.57c. Distributed by the author. Department of Genetics, University of Washington.Google Scholar
  7. Gantotti, B.V. & K.K. Kartha, 1986. Pea. In: Evans, D.A., W.R. Sharp & P.V. Ammirato (Eds.), Handbook of Plant Cell Culture, Vol. 4, Techniques and Applications, pp. 370–418. Macmillan, New York.Google Scholar
  8. Hussain, A., S.T. Ali-Khan & W. Bushuk, 1988. Field pea cultivar identification by electrophoretic patterns of cotyledon proteins. Can J Plant Sci 68: 1143–1147Google Scholar
  9. Kiss, G., G. Csanádi, K. Kálmán, P Kaló & L. Okrész, 1993. Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238: 129–137.Google Scholar
  10. Kupicha, F.K., 1981. Tribe 21, Vicieae. In: Polhill, R.M. & P.H. Raven (Eds.), Advances in Legume Systematics, pp. 377–381. Royal Botanic Gardens, Kew.Google Scholar
  11. Jaccard, P., 1908. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44: 223–270.Google Scholar
  12. Paran, I. & R.W. Michelmore, 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85: 985–993.Google Scholar
  13. Paterson, A.H., S.D. Tanksley & M.E. Sorrels, 1991. DNA markers in plant improvement. Adv Agron 46: 39–90.Google Scholar
  14. Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis & H.A. Erlich, 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.Google Scholar
  15. Samec, P., 1993. DNA polymorphism and RAPD technology. Genet Šlecht (Prague) 29: 291–320.Google Scholar
  16. Samec, P. & V. Našinec, 1995. Detection of DNA polymorphism among pea cultivars using RAPD technique. Biologia Plantarum 37: 321–327.Google Scholar
  17. Schulz, B., L. Westphal & G. Wricke, 1994. Linkage groups of isozymes, RFLP and RAPD markers in carrot (Daucus carota L. sativus). Euphytica 74: 67–76.Google Scholar
  18. Tanksley, S.D., 1983. Molecular markers in plant breeding. Plant Mol Biol Rep 1: 3–8.Google Scholar
  19. Timmerman, G.M., T.J. Frew, N.F. Weeden, A.L. Miller & D.S. Goulden, 1994. Linkage analysis of er-1, a recesive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor Appl Genet 88: 1050–1055.Google Scholar
  20. Tingey, S.V. & J.P. del Tufo, 1993. Genetic analysis with random amplified polymorphic DNA markers. Plant Physiol 101: 349–352.Google Scholar
  21. Wilkie, S.E., P.G. Isaak & R.J. Slater, 1993. Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor Appl Genet 86: 497–504.Google Scholar
  22. Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18: 6531–6535.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Petr Samec
    • 1
  • Vít Našinec
    • 1
  1. 1.Institute of Plant Molecular BiologyAcademy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic

Personalised recommendations