Skip to main content
Log in

The weld profile effect on stress intensity factors in weldments

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A method for the determination of weight functions relevant to welded joints and subsequent calculation of stress intensity factors is presented. The weight function for edge cracks emanating from the weld toe in a T-butt welded joint has been derived by using the Petroski-Achenbach crack opening displacement function. The weight function makes it possible to study efficiently the effect of weld profile parameters, such as the weld toe radius and weld angle, on stress intensity factors corresponding to different stress systems.

The method enables relatively easy calculations of stress intensity factors for welded T-butt joints for a variety of geometry and loading configurations. It was also found that the local weld geometric parameters affect the stress intensity factor more than the local stress fields in the weld toe neighbourhood.

Résumé

On présente une méthode de détermination des fonctions pondérées relatives à des joints soudés, et de calcul subséquent de facteurs d'intensité de contrainte.

Dans le cas de fissure de bords émanant de la racine de la soudure dans un joint d'angle, la fonction pondérée a été déterminée en utilisant la fonction COD de Petroski-Achenbach. Cette fonction permet détudier de manière efficace les effets des paramètres géométriques afférant au profil de la soudure, tels que le rayon à la racine et l'angle du cordon, sur les facteurs d'intensité de contraintes correspondant à diverses conditions de sollicitation.

La méthode permet de procéder à des calculs relativement simples des facteurs d'intensité de contraintes pour ce type de soudures, pour différentes géométries et configurations de mise en charge.

On trouve également que les paramètres de géométrie locale d'une soudure ont une influence plus prononcée sur le facteur d'intensité de contrainte que les champs de contraintes locales qui règnent dans la région de sa racine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tada, P. Paris and G. Irwin: The Stress Analysis of Cracks Handbook, Del Research Corporation, St Louis, Missouri (1973).

    Google Scholar 

  2. D.P. Pook and D.J. Cartwright: Compendium of Stress Intensity Factors, The Hillington Press, Uxbridge (1976).

    Google Scholar 

  3. I.F. Smith: in Proceedings of the 3rd International Conference on Numerical Methods in Fracture Mechanics, A.R. Luxmoore, D.R.J. Own (eds), Pineridge Press, Swansea, UK (1984) pp 561–574.

    Google Scholar 

  4. J.D. Burk and F.V. Lawrence: Welding Journal 56, No. 2 (1977) 43s-51s.

    Google Scholar 

  5. G. Glinka: in ASTM STP 677, Fracture Mechanics-Proceedings of the 11th National Symposium of Fracture Mechanics, C.W. Smith (ed.), American Society for Testing and Materials, Philadelphia (1979) pp 198–214.

    Google Scholar 

  6. G.E. Nordmark, L.N.M. Mueller and R.A. Kelsey: in ASTM STP 776, Residual Stress Effects in Fatigue, J.F. Throop and H.S. Reemsnyder (eds.), American Society for Testing and Materials, Philadelphia (1982) 44–62.

    Google Scholar 

  7. G. Glinka, Z. Gmur and Z. Swiderski: Engineering Fracture Mechanics 20, No. 1 (1984) 103–112.

    Google Scholar 

  8. X.R. Wu: Engineering Fracture Mechanics 19, No. 3 (1984) 427–439.

    Google Scholar 

  9. H.F. Bueckner: ZAMM 50, No. 9 (1970) 529–546.

    Google Scholar 

  10. J.R. Rice: International Journal of Solids and Structures 8 (1972) 751–758.

    Google Scholar 

  11. G. Glinka: in Advances in Surface Treatment, Vol. 4-Residual Stresses, A. Niku-Lari (ed.), Pergamon Press, UK (1987) 413–454.

    Google Scholar 

  12. A.P. Parker: in ASTM STP 776, Residual Stress Effects in Fatigue, J.F. Throop and H.S. Reemsnyder (eds.), American Society for Testing and Materials, Philadelphia (1982) 13–31.

    Google Scholar 

  13. H.J. Petroski and J.D. Achenbach: Engineering Fracture Mechanics 10, No. 2 (1978) 257–266.

    Google Scholar 

  14. H.F. Bueckner: Z. Angweandte Mathemat. Mechan 51 (1971) 97–109.

    Google Scholar 

  15. N. Hasebe and M. Ueda: Bulletin of the JSME 24, No. 189 (1981) 483–488.

    Google Scholar 

  16. N. Hasebe and S. Matsuura: Engineering Fracture Mechanics 20, No. 3 (1984) 447–462.

    Google Scholar 

  17. L.F. Impellizzeri and D.L. Rich: in ASTM STP 595, Fatigue Crack Growth Under Spectrum Loads, American Society for Testing and Materials, Philadelphia (1976) 320–336.

    Google Scholar 

  18. A.F. Grandt: International Journal of Fracture 11, No. 2 (1975) 283–294.

    Google Scholar 

  19. F. Görner, C. Matheck and P. Moraweitz: Engineering Fracture Mechanics 22, No. 2 (1985) 268–277.

    Google Scholar 

  20. X. Niu and G. Glinka: Engineering Fracture Mechanics (1987) (to be published).

  21. J. Schijve: Fatigue of Engineering Materials and Structures 5, No. 2 (1982) 325–332.

    Google Scholar 

  22. G. Glinka: Engineering Fracture Mechanics 22, No. 5 (1985) 839–854.

    Google Scholar 

  23. M. Creager and P. Paris: International Journal of Fracture Mechanics 3, No. 2 (1967) 247–252.

    Google Scholar 

  24. R.I. Stephens and G. Glinka: Experimental Mechanics 20, No. 1 (1980) 24–30.

    Google Scholar 

  25. K. Yamada and M.A. Hirt: Journal of the Structural Division, ASCE 108, No. ST7 (1982) 1526–1540.

    Google Scholar 

  26. G. Glinka and A. Krzyżecki: Fatigue of Engineering Materials and Structures 4, No. 1 (1981) 35–48.

    Google Scholar 

  27. W.D. Dover, G. Glinka and R. Collins: in Non-Destructive Testing in the Fitness-For-Purpose Assessment of Welded Costructions-Conference Papers, J. Sanders (ed.), The Welding Institute, Cambridge (1984) pp 1–19.

    Google Scholar 

  28. M. Skorupa and A. Skorupa: Theoretical and Applied Fracture Mechanics 6, No. 1 (1986) 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, X., Glinka, G. The weld profile effect on stress intensity factors in weldments. Int J Fract 35, 3–20 (1987). https://doi.org/10.1007/BF00034531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034531

Keywords

Navigation