Skip to main content
Log in

An energy analysis of triple junction crack nucleation due to the wedging action of grain boundary dislocations

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A physical model of wedge crack formation at triple junctions in polycrystalline materials is analyzed in this paper. The origin of the crack formation is the sliding of grain boundaries meeting at triple junctions. Based on the dislocation model of grain boundaries, the sliding is attributed to the gliding of grain boundary dislocations (GBDs). Consequently, the resulting crack formation can be analyzed theoretically in terms of the energetics of the piling up of interacting GBDs. The model permits the determination of crack stability or instability as well as the length of the stable crack. Results are obtained in this paper for polycrystalline ice and aluminium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. McLean, Journal of the Institute of Metals 85 (1957) 468–472.

    Google Scholar 

  2. C. Gandhi and M.F. Ashby, Acta Metallurgica 27 (1979) 1565–1602.

    Google Scholar 

  3. N.K. Sinha, Acta Metallurgica 37 (1989) 3107–3118.

    Google Scholar 

  4. T.S. Kê, Journal of Applied Physics 20 (1949) 274–280.

    Google Scholar 

  5. N.F. Mott, Proceedings of the Physical Society 60 (1948) 391–394.

    Google Scholar 

  6. M.F. Ashby, Surface Science 31 (1972) 498–542.

    Google Scholar 

  7. M.F. Ashby, C. Gandhi, D.M.R. Taplin, Acta Metallurgica 27 (1979) 699–729.

    Google Scholar 

  8. Y. Ishida and D. McLean, Metal Science Journal 1 (1967) 171–172.

    Google Scholar 

  9. A.N. Stroh, Proceedings of the Royal Society of London A 223 (1954) 404–414.

    Google Scholar 

  10. R.S. Gates, Acta Metallurgica 21 (1973) 855–864.

    Google Scholar 

  11. W. Bollman, Philosophical Magazine 16 (1967) 363–381.

    Google Scholar 

  12. G.R. Kegg, C.A.P. Horton, and J.M. Silcock, Philosophical Magazine 27 (1973) 1041–1055.

    Google Scholar 

  13. H. Kokawa, T. Watanabe and S. Karashima, Philosophical Magazine A 44 (1981) 1239–1254.

    Google Scholar 

  14. T. Hondoh and A. Higashi, The Journal of Physical Chemistry 87 (1983) 4044–4050.

    Google Scholar 

  15. M.S. Wu and J. Niu, International Journal of Fracture 68 (1994) 151–181.

    Google Scholar 

  16. M.S. Wu and J. Niu, Philosophical Magazine A 71 (1995) 831–854.

    Google Scholar 

  17. Y.T. Chou, F. Garofalo and R.W. Whitmore, Acta Metallurgica 8 (1960) 480–488.

    Google Scholar 

  18. J.D. Eshelby, F.C. Frank and F.R.N. Nabarro, Philosophical Magazine 42 (1951) 351–364.

    Google Scholar 

  19. W. Bollman, Philosophical Magazine A 49 (1984) 73–79.

    Google Scholar 

  20. A.A. Nazarov, A.E. Romanov and R.Z. Valiev, Acta Metallurgica 41 (1993) 1033–1040.

    Google Scholar 

  21. A. Yu. Belov, Philosophical Magazine A 68 (1993) 1215–1231.

    Google Scholar 

  22. J.P. Hirth and J. Lothe; Theory of Dislocations, Second Edition, John Wiley and Sons (1982).

  23. V.R. Regel, A.M. Leksovskii and S.N. Sakiev, International Journal of Fracture 11 (1975) 841–850.

    Google Scholar 

  24. S. Shyam Sunder and M.S. Wu, Cold Regions Science and Technology 18 (1990) 29–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M.S., Zhou, H. An energy analysis of triple junction crack nucleation due to the wedging action of grain boundary dislocations. Int J Fract 78, 165–191 (1996). https://doi.org/10.1007/BF00034524

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034524

Keywords

Navigation