Skip to main content
Log in

An inelastic multiple discrete aperities model for the effects of compressive underloads in fatigue crack growth

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

As a common practice, the compressive (negative load ratio) excursions are ignored when analyses of fatigue crack growth in metals are conducted. However, recent experimental data on fatigue crack growth with intermittent compressive load excursions have shown that the use of this assumption leads in most cases to nonconservative predictions. This paper presents a model that is capable of explaining the observed behavior, including the ‘saturation’ of the compressive overload effects, and the increase in the crack growth rate once the initial, positive load ratio profile is resumed, following a compressive excursion. The model is based on the plastic crushing of a single asperity or multiple asperities located on the crack face close to the crack tip and under dominantly plane strain conditions. A comparison of the behavior for one and for two asperities is made. Moreover, the effects of hardness and strain hardening are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bucci, ASTM STP 738 (1981) 5–28.

  2. R.L. Carlson and G.A. Kardomateas, International Journal of Fatigue 16 (1994) 141–146.

    Google Scholar 

  3. E. Zaiken and R.O. Ritchie, Engineering Fracture Mechanics 22 (1985) 35–48.

    Google Scholar 

  4. H. Kemper, B. Weiss and R. Stickler, Engineering Fracture Mechanics 32 (1989) 591–600.

    Google Scholar 

  5. A.J. Tack and C.J. Beevers, Proceedings, Fourth International Conference on Fatigue and Fatigue Thresholds, Honolulu, 15–20 July 1990, MCPE Ltd, UK (1990) 1179–1184.

    Google Scholar 

  6. R.L. Carlson, E. Blakeley, G.A. Kardomateas and C.J. Beevers, Proceedings, Fifth International Conference on Fatigue and Fatigue Thresholds, Montreal, 3–7 May 1993, MCPE Ltd, UK (1993) 877–822.

    Google Scholar 

  7. A.J. McEvily and Z. Yang, Proceedings, Fourth International Conference on Fatigue and Fatigue Thresholds, Honolulu, 15–20 July 1990, MCPE Ltd, UK (1990) 23–36.

    Google Scholar 

  8. M.T. Yu, T.H. Topper and P. Au, Proceedings, Second International Conference on Fatigue and Fatigue Thresholds, Birmingham, 3–7 September 1984, Chameleon Press, UK (1984) 179–190.

    Google Scholar 

  9. B. Budiansky and J.W. Hutchinson, ASME Journal of Applied Mechanics 45 (1978) 267–276.

    Google Scholar 

  10. J.C. Newman, Jr., ASTM STP 748 (1981) 53–84.

  11. O. Buck, R. Thompson and D. Rehbein, ASTM STP 982 (1988) 536–547.

  12. P.J.E. Forsyth, International Journal of Fatigue (1983) 3–14.

  13. L.F. Coffin, Proceedings of the Institute of Mechanical Engineers 188 (1974) 109–127.

    Google Scholar 

  14. S. Suresh, G.F. Zamiski and R.O. Ritchie, Metallurgical Transactions 12A (1981) 1435–1443.

    Google Scholar 

  15. C.J. Beevers, R.L. Carlson, K. Bell and E.A. Starke, Engineering Fracture Mechanics 19 (1984) 93–100.

    Google Scholar 

  16. R.L. Carlson and C.J. Beevers, Engineering Fracture Mechanics 20 (1984) 687–690.

    Google Scholar 

  17. W.A. Herman, R.W. Hertzberg and R. Jaccard, in Advances in Fracture Research, 7th International Conference on Fracture, vol. 2, Houston, TX, Pergamon, Oxford (1989) 1417.

    Google Scholar 

  18. R.W. Hertzberg, W.A. Herman, T. Clark and R. Jaccard, ASTM STP 1149 (1992) 197–220.

  19. C.M. Ward-Close and C.J. Beevers, Metallurgical Transactions 12A (1980) 1435–1443.

    Google Scholar 

  20. J.R. Rice, in Fracture of Solids, vol. 2, H. Liebowitz(ed.), Academic Press, New York (1969) 218–221.

    Google Scholar 

  21. G.C. Sih, P.C. Paris and F. Erdogan, ASME Journal of Applied Mechanics (1962) 306–312.

  22. K. Hellan, Introduction to Fracture Mechanics, McGraw-Hill, New York (1984).

    Google Scholar 

  23. G.R. Irwin, Proceedings, Seventh Sagamore Ordnance Materials Research Conference (August 1960).

  24. F.A. McClintock and G.R. Irwin, ASTM STP 381 (1965) 84–113.

  25. J.B. Chang, M. Szamossi and L-W. Liu, ASTM STP 748 (1981) 115–132.

  26. J. Willenborg, R. Engle and H. Wood, Report AFFDL-TM-71-1 (1971).

  27. S. Suresh and J.R. Brockenbrough, Acta Metallurgica 36 (1988) 1455–1470.

    Google Scholar 

  28. R.L. Carlson, G.A. Kardomateas and P.R. Bates, International Journal of Fatigue (1991) 453–460.

  29. C.J. Beevers and R.L. Carlson, in Fatigue Crack Growth — 30 Years of Progress, R.A. Smith (ed.) Pergamon Press (1986) 89–101.

  30. J.F. Knott, in Fatigue Crack Growth—30 Years of Progress, Pergamon, Oxford (1986) 31–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kardomateas, G.A., Carlson, R.L. An inelastic multiple discrete aperities model for the effects of compressive underloads in fatigue crack growth. Int J Fract 70, 99–115 (1994). https://doi.org/10.1007/BF00034134

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00034134

Keywords

Navigation