International Journal of Fracture

, Volume 76, Issue 1, pp 61–77 | Cite as

Asymptotic and finite element analyses of mode III dynamic crack growth at a ductile-brittle interface

  • K. Ranjith
  • R. Narasimhan
Article

Abstract

In this work, dynamic crack growth along a ductile-brittle interface under anti-plane strain conditions is studied. The ductile solid is taken to obey the J2 flow theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic behavior. Firstly, the asymptotic near-tip stress and velocity fields are derived. These fields are assumed to be variable-separable with a power singularity in the radial coordinate centered at the crack tip. The effects of crack speed, strain hardening of the ductile phase and mismatch in elastic moduli of the two phases on the singularity exponent and the angular functions are studied. Secondly, full-field finite element analyses of the problem under small-scale yielding conditions are performed. The validity of the asymptotic fields and their range of dominance are determined by comparing them with the results of the full-field finite element analyses. Finally, theoretical predictions are made of the variations of the dynamic fracture toughness with crack velocity. The influence of the bi-material parameters on the above variation is investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Rice, ASME Journal of Applied Mechanics 55 (1988) 98–103.CrossRefGoogle Scholar
  2. 2.
    C.F. Shih, Materials Science and Engineering A143 (1991) 77–90.CrossRefGoogle Scholar
  3. 3.
    C.F. Shih and G.C. Asaro, ASME Journal of Applied Mechanics 55 (1988) 299–316.CrossRefGoogle Scholar
  4. 4.
    C.F. Shih and G.C. Asaro, ASME Journal of Applied Mechanics 56 (1989) 763–779.CrossRefGoogle Scholar
  5. 5.
    E. Zywicz and D.M. Parks, ASME Journal of Applied Mechanics 56 (1989) 577–584.CrossRefGoogle Scholar
  6. 6.
    A.D. Chitaley and F.A. McClintock, Journal of Mechanics and Physics of Solids 19 (1971) 147–163.CrossRefGoogle Scholar
  7. 7.
    J.R. Rice in Mechanics of Solids, H.G. Hopkins and M.J. Sewell (eds.), Pergamon Press, Oxford (1982) 539–562.CrossRefGoogle Scholar
  8. 8.
    W.J. Drugan, J.R. Rice and T.L. Sham, Journal of Mechanics and Physics of Solids 30 (1982) 447–473.CrossRefGoogle Scholar
  9. 9.
    P.P. Castañeda, Journal of Mechanics and Physics of Solids 35 (1987) 227–268.CrossRefGoogle Scholar
  10. 10.
    R.H. Dean and J.W. Hutchinson, in Fracture Mechanics: Twelfth Conference, ASTM STP 700 (1980) 383–405.Google Scholar
  11. 11.
    R. Narasimhan, A.J. Rosakis and J.F. Hall, ASME Journal of Applied Mechanics 54 (1987) 846–853.CrossRefGoogle Scholar
  12. 12.
    J.D. Achenbach, P. Burgers and V. Dunayevsky, in Non-linear and Dynamic Fracture, N. Perrone and S. Atluri (eds.) ASME AMD 35 (1979) 105–124.Google Scholar
  13. 13.
    L.B. Freund and A.S. Douglas, Journal of Mechanics and Physics of Solids 30 (1982) 59–74.CrossRefGoogle Scholar
  14. 14.
    J.T. Leighton, C.R. Champion and L.B. Freund, Journal of Mechanics and Physics of Solids 35 (1987) 541–563.CrossRefGoogle Scholar
  15. 15.
    P.S. Lam and L.B. Freund, Journal of Mechanics and Physics of Solids 33 (1985) 153–167.CrossRefGoogle Scholar
  16. 16.
    J.D. Achenbach, M.F. Kanninen and C.F. Popelar, Journal of Mechanics and Physics of Solids 29 (1981) 211–225.CrossRefGoogle Scholar
  17. 17.
    S. Östlund and P. Gudmundson, International Journal of Solids and Structures 24 (1988) 1141–1158.CrossRefGoogle Scholar
  18. 18.
    C.S. Venkatesha and R. Narasimhan, Engineering Fracture Mechanics 39 (1991) 1015–1026.CrossRefGoogle Scholar
  19. 19.
    R. Narasimhan and C.S. Venkatesha, International Journal of Fracture 61 (1993) 139–157.CrossRefGoogle Scholar
  20. 20.
    P.P. Castañeda and P.A. Mataga, International Journal of Solids and Structures 27 (1991) 105–133.CrossRefGoogle Scholar
  21. 21.
    W.J. Drugan, ASME Journal of Applied Mechanics 58 (1991) 111–119.CrossRefGoogle Scholar
  22. 22.
    S. Omprakash and R. Narasimhan, A finite element analysis of Mode III quasi-static crack growth at a ductile-brittle interface, ASME Journal of Applied Mechanics (1995) to appear.Google Scholar
  23. 23.
    W. Yang, Z. Suo and C.F. Shih, Proceedings of the Royal Society of London A433 (1991) 679–697.CrossRefGoogle Scholar
  24. 24.
    X. Deng, International Journal of Solids and Structures 30 (1993) 2937–2951.CrossRefGoogle Scholar
  25. 25.
    K. Ranjith and R. Narasimhan, Asymptotic fields for dynamic crack growth at a ductile-brittle interface, Journal of Mechanics and Physics of Solids (1995) submitted.Google Scholar
  26. 26.
    W.J. Drugan and Y. Shen, Journal of Mechanics and Physics of Solids 35 (1987) 771–787.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • K. Ranjith
    • 1
  • R. Narasimhan
    • 1
  1. 1.Department of Mechanical EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations