Skip to main content
Log in

Size dependence of concrete fracture energy determined by RILEM work-of-fracture method

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The paper analyzes the size dependence of the fracture energy of concrete obtained according to the existing RILEM recommendation proposed by Hillerborg and based on the work-of-fracture method of Nakayama, Tattersal and Tappin, in which the energy dissipated at the fracture front is evaluated from the measured load-displacement curve. The analysis is based on the size effect law proposed by Bažant, which has been shown to be applicable to the size ranges up to about 1:20 and apply in the same form for all specimen geometries. The analysis utilizes the previously developed method for calculating the R-curve from the size effect, and the load-deflection curve from the R-curve. The R-curve is dependent on the geometry of the specimen. The results show that the fracture energy according to the existing RILEM recommendation is not size-independent, as desired, but depends strongly on the specimen size. This dependence is even stronger than that of the R-curve. When the specimen size is extrapolated to infinity, the fracture energy according to the RILEM recommendation coincides with the fracture energy obtained by the size effect method. It is also found that, in fracture specimens of usual sizes, the pre-peak contribution of the work of the load to the fracture energy is relatively small. Finally, as a by-product, the analysis also verifies the fact that, in three-point bend fracture specimens, the fracture energy according to the RILEM definition is dependent on the notch depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.P. Bažant, in Fracture of Concrete and Rock, Proceedings of SEM-RILEM International Conference, Houston, June, 1987, S.P. Shah and S.E. Swartz (eds.), Springer-Verlag, NY (1989) 229–241; also Preprints, published by Society for Experimental Mechanics (1987) 390–402.

    Google Scholar 

  2. Z.P. Bažant and P.A. Pfeiffer, ACI Material Journal 84 (6) (1987) 468–480.

    Google Scholar 

  3. Z.P. Bažant, Journal of Engineering Mechanics, ASCE 110 (4) (1984) 518–35.

    Google Scholar 

  4. Z.P. Bažant, in Proceedings of U.S.-Japan Seminar, Tokyo, 1985, Finite Element Analysis of Reinforced Concrete Structures, C. Meyer and H. Okamura (eds.), ASCE, New York (1986) 121–150.

    Google Scholar 

  5. RILEM, Materials and Structures 18 (106) (1985) 285–290.

    Google Scholar 

  6. A. Hillerborg, Materials and Structures 18 (106) (1985) 291–96.

    Google Scholar 

  7. J. Nakayama, Journal of American Ceramics Society 48 (11) (1965) 583–87.

    Google Scholar 

  8. H.G. Tattersall and G. Tappin, Journal of Material Science 1 (3) (1966) 296–301.

    Google Scholar 

  9. A. Hillerborg, Materials and Structures 18 (107) (1986) 407–13.

    Google Scholar 

  10. P.E. Petersson, Cement and Concrete Research 10 (1) (1980) 78–101.

    Google Scholar 

  11. F. Moavenzadeh and R. Kuguel, Journal of Materials 4 (3) (1969) 497–519.

    Google Scholar 

  12. F. Radjy, Cement and Concrete Research 3 (4) (1973) 343–361.

    Google Scholar 

  13. A. Hillerborg, M. Modéer and P.-E. Petersson, Cement and Concrete Research 6 (6) (1976) 773–782.

    Google Scholar 

  14. M.P. Wnuk, Journal of Applied Mechanics 41 (1) series E (1974) 234–42.

    Google Scholar 

  15. A. Bascoul, F. Kharchi and J.C. Maso, in Fracture of Concrete and Rock, Proceedings of SEM-RILEM International Conference, Houston, June 1987, S.P. Shah and S.E. Swartz (eds.) Springer-Verlag, NY (1989) 396–408.

    Google Scholar 

  16. M. Sakai, K. Urashima and M. Inagaki, Journal of American Ceramics Society 66 (12) (1983) 868–74.

    Google Scholar 

  17. T.B. Troczynski and P.S. Nicholson, Journal of American Ceramics Society 70 (2) (1987) 78–85.

    Google Scholar 

  18. F.H. Wittmann, K. Rokugo, E. Brühwiler, H. Mihashi and P. Simonin, Materials and Structures 21 (121) (1988) 21–32.

    Google Scholar 

  19. E. Brühwiler and F.H. Wittmann, Engineering Fracture Mechanics 35 (1/2/3) (1990) 117–25.

    Google Scholar 

  20. F.H. Wittmann, H. Mihashi and N. Nomura, Engineering Fracture Mechanics 35 (1/2/3) (1990) 107–15.

    Google Scholar 

  21. W. Brameshuber and H.K. Hilsdorf, Engineering Fracture Mechanics 35 (1/2/3) (1990) 95–106.

    Google Scholar 

  22. P. Nallathambi and B.L. Karihaloo, Cement and Concrete Research 16 (3) (1986) 373–82.

    Google Scholar 

  23. S.E. Swartz and T.M.E. Refai, in Fracture of Concrete and Rock, Proceedings of SEM-RILEM International Conference, Houston, June 1987, S.P. Shah and S.E. Swartz (ed.). Springer-Verlag, NY (1989) 242–254.

    Google Scholar 

  24. Y.S. Jenq and S.P. Shah, Engineering Fracture Mechanics 21 (5) (1985) 1055–1069.

    Google Scholar 

  25. S. Xu and G. Zhao, in Fracture Toughness and Fracture Energy, Test Methods for Concrete and Rock, Preprints of the Proceedings of an International Workshop, Sendai, Japan, October, 1988, M. Izumi (ed.), Tohoku University, Sendai, Japan (1988) 48–62.

    Google Scholar 

  26. R.W. Davidge and G. Tappin, Journal of Material Science 3 (2) (1968) 165–73.

    Google Scholar 

  27. A. Hillerborg, in Fracture Toughness and Fracture Energy, Test Methods for Concrete and Rock, Preprints of the Proceedings of an International Workshop, Sendai, Japan, October 1988, M. Izumi (ed.), Tohoku University, Sendai, Japan (1988) 121–127.

    Google Scholar 

  28. P. Maturana, J. Planas and M. Elices, Engineering Fracture Mechanics 35 (4/5) (1990) 827–834.

    Google Scholar 

  29. J. Planas, P. Maturana, G. Guinea and M. Elices, in Advances in Fracture Research, Proceedings of an International Conference (ICF7, Vol. 2), Houston, March 1989, Salama et al (eds.), Pergamon Press, Oxford (1989) 1890–1817.

    Google Scholar 

  30. J. Planas and M. Elices, in Fracture Toughness and Fracture Energy, Test Methods for Concrete and Rock, Preprints of the Proceedings of an International Workshop, Sendai, Japan, October, 1988, M. Izumi (ed.), Tohoku University, Sendai, Japan (1988) 1–18.

    Google Scholar 

  31. Z.P. Bažant, R. Gettu and M.T. Kazemi, International Journal of Rock Mechanics and Mining Sciences 28 (1991) 43–51.

    Google Scholar 

  32. R. Gettu, Z.P. Bažant and M.E. Karr, Fracture Properties and Brittleness of High Strength Concrete, Report No. 89-10/B627f, Center for Advanced Cement-Based Materials, Northwestern University (1989); also ACI Materials Journal, in press.

  33. H. Tada, P.C. Paris and G.R. Irwin, The Stress Analysis of Cracks Handbook, 2nd. ed., Paris Production, St. Louis (1985).

    Google Scholar 

  34. Z.P. Bažant and M.T. Kazemi, International Journal of Fracture 44 (1990) 111–131.

    Google Scholar 

  35. Z.P. Bažant, and M.T. Kazemi, Journal of American Ceramics Society 73 (1990) 1841–1853.

    Google Scholar 

  36. J. Planas and M. Elices, in Cracking and Damage, Strain Localization and Size Effect, Proceedings of France-US Workshop, Cachan, France, 1988. J. Mazars and Z.P. Bažant (eds.), Elsevier, London (1989) 462–476.

    Google Scholar 

  37. H. Horii, Z. Shi and S.-X. Gong, in Cracking and Damage, Strain Localization and Size Effect, Proceedings of France-US Workshop, Cachan, France, 1988, J. Mazars and Z.P. Bažant (eds.), Elsevier, London (1989) 104–115.

    Google Scholar 

  38. Z.P. Bažant, and Y. Xi, Statistical Size Effect in Quasibrittle Structures: II. Nonlocal Theory, Report No. 90–5/616s(II), Center for Advanced Cement-Based Materials, Northwestern University, Evanston, Ill., 1990; also Journal of Engineering Mechanics, ASCE, in press.

    Google Scholar 

  39. J. Homeny, T. Darroudi and R.C. Bradt, Journal of American Ceramics Society 63 (5–6) (1980) 326–31.

    Google Scholar 

  40. A. Carpinteri, International Journal of Solids and Structures 25 (4) (1989) 407–429.

    Google Scholar 

  41. P. Marti, ACI Materials Journal 86 (6) (1989) 597–601.

    Google Scholar 

  42. J.L. ShannonJr. and D.G. Munz, in Chevron-Notched Specimens: Testing and Stress Analysis, ASTM STP 855, J.H. Underwood et al. (eds.), ASTM, Philadelphia (1984) 270–280.

    Google Scholar 

  43. K. Matsuki, in Fracture Toughness and Fracture Energy, Test Methods for Concrete and Rock, Preprints of the Proceedings of an International Workshop, Sendai, Japan, October, 1988, M. Izumi (ed.), Tohoku University, Sendai, Japan (1988) 234–248.

    Google Scholar 

  44. J. Huang, and C. Li, Composites 20 (4) (1989) 361–378.

    Google Scholar 

  45. Z.P. Bažant, Cement and Concrete Research 17 (6) (1989) 951–967.

    Google Scholar 

  46. M. Ortiz, International Journal of Solids and Structures 24 (3) (1988) 231–250.

    Google Scholar 

  47. F. de Larrad, C. Boulay and P. Rossi, in Utilization of High Strength Concrete, Proceedings of a Symposium, Stavanger, Norway, June, 1987, I. Holand et al. (eds.), Tapir Publishers (1987) 215–223.

  48. Z.P. Bažant, J.-K. Kim and P.A. Pfeiffer, Journal of Structural Engineering 112 (2) (1986) 289–307.

    Google Scholar 

  49. Z.P. Bažant, J.-G. Lee and P.A. Pfeiffer, Engineering Fracture Mechanics 26 (1) (1987) 45–57.

    Google Scholar 

  50. M. Sakai and M. Inagaki, Journal of American Ceramic Society 72 (3) (1989) 388–394.

    Google Scholar 

  51. Z.P. Bažant and P.C. Prat, ACI Materials Journal 85 (4) (1988) 262–271.

    Google Scholar 

  52. L.J. Malvar and G.E. Warren, Materials and Structures 20 (120) (1987) 440–447.

    Google Scholar 

  53. M. Elices and J. Planas, in Fracture Mechanics of Concrete Structures, RILEM TC90-FMA, L. Elfgren (ed.), Chapman and Hall, London (1989) 16–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bažant, Z.P., Kazemi, M.T. Size dependence of concrete fracture energy determined by RILEM work-of-fracture method. Int J Fract 51, 121–138 (1991). https://doi.org/10.1007/BF00033974

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033974

Keywords

Navigation