Skip to main content
Log in

Application of the biaxial Iosipescu method to mixed-mode fracture of unidirectional composites

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper the biaxial Iosipescu test method has been used, employing specimens with a central precrack placed along the notch-root axis, to study the intralaminar failure properties of a unidirectional carbon/epoxy composite under mixed-mode (dominated by shear) loadings. A linear finite element analysis has been performed to determine the energy release rates and stress intensity factors for the central crack under various biaxial loading conditions. In addition, a series of simple and biaxial fracture experiments have been performed on the composite material. Numerical results indicate that the method is capable of generating a wide range of mixed-mode loading conditions at the crack tip for various loading angles and crack lengths. Using the numerical results, in conjunction with experimental data, the biaxial intralaminar failure process in the cracked Iosipescu specimens has been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Wu, Journal of Applied Mechanics 34, no. 4 (1967) 967–974.

    Google Scholar 

  2. J.M. McKinney, Journal of Composite Materials 6 (1972) 164–166.

    Google Scholar 

  3. R.A. Jurf and R.B. Pipes, Journal of Composite Materials 16 (1982) 386–394.

    Google Scholar 

  4. A.J. Russell and K.N. Street, in ASTM 976 (1985) 349–370.

  5. W.R. Broughton, M. Kumosa and D. Hull, Composites Science and Technology 38 (1990) 299–325.

    Google Scholar 

  6. W.R. Broughton, ‘Shear properties of unidirectional carbon fiber composites’, Ph.D. thesis, University of Cambridge, U.K. (1989).

  7. N. Iosipescu, Journal of Materials 2, no. 1 (1967) 537–566.

    Google Scholar 

  8. D.E. Walrath and D.F. Adams, Experimental Mechanics 23, no. 1 (1983) 105–110.

    Google Scholar 

  9. D.F. Adams and D.E. Walrath, Experimental Mechanics 27, no. 2 (1987) 113–119.

    Google Scholar 

  10. J.A. Barnes, M. Kumosa and D. Hull, Composites Science and Technology 28 (1987) 251–268.

    Google Scholar 

  11. M. Kumosa and D. Hull International Journal of Fracture 35 (1987) 83–102.

    Google Scholar 

  12. J. Morton, H. Ho, M.Y. Tsai and G.L. Farley, Journal of Composite Materials 26, no. 5 (1992) 708–750.

    Google Scholar 

  13. A. Voloshin and M. Arcan, Experimental Mechanics 20, no. 8 (1980) 280–284.

    Google Scholar 

  14. A. Bansal and M. Kumosa, Journal of Composite Materials 29, no. 3 (1995) 334–358.

    Google Scholar 

  15. M.V. Balakrishnan and M. Kumosa, ‘Biaxial testing of a SiC-Ti metal matrix composite’, Annual report to GE Aircraft Engines, 1993.

  16. G.J. DeSalvo and R.W. Gorman, in Ansys Engineering Analysis System: User's Manual, vol. 1, Swanson Analysis Systems Inc. (1989).

  17. G.C. Sih, P.C. Paris and G.R. Irwin, International Journal of Fracture 1 (1965) 189–203.

    Google Scholar 

  18. S. Parhizgar, L.W. Zachary and C.T. Sun, International Journal of Fracture 20 (1982) 247–256.

    Google Scholar 

  19. E.F. Rybicki and M.F. Kanninen, Engineering Fracture Mechanics 9 (1977) 931–938.

    Google Scholar 

  20. F.G. Buchholz and M.F. Kanninen, ‘Fracture analysis by the improved and generalized modified crack closure integral’, Paper presented at 1 st World Congress on Computation Mechanics, Austin, Texas (1986).

  21. I.S. Raju, Engineering Fracture Mechanics 28 (1987) 251–274.

    Google Scholar 

  22. R. Sethuraman and S.K. Maiti, Engineering Fracture Mechanics 30, no. 2 (1988) 227–231.

    Google Scholar 

  23. T.K. O'Brien, in Damage in Composite Materials, ASTM STP 775, K.L. Reifsnider (ed.) (1982) 140–167.

  24. N. Sukumar and M. Kumosa, International Journal of Fracture 62, no. 1 (1993) 55–85.

    Google Scholar 

  25. A.C. Kaya and F. Erdogan, International Journal of Fracture 16, no. 2 (1980) 171–190.

    Google Scholar 

  26. Acoustic emission monitoring system AET 5500 (Operating Instructions), Hartford Steam Boiler Inspection Technologies, Sacramento, Ca., U.S.A., Software Version D07 (Nov. 1990).

  27. C. Corleto, W. Bradley and M. Henriksen, in 6th International Conference on Composite Materials, F.L. Matthews, N.C.R. Buskell, J.M. Hodgkinson, J. Morton (eds.), Elsevier Science Publishers Ltd., UK, vol. 3 (1987) 378–387.

    Google Scholar 

  28. H.T. Hahn, Composites Technology Review 5, no. 1 (1983) 26–29.

    Google Scholar 

  29. G.S. Giare, A. Herold, V. Edwards and R.R. Newcomb, Engineering Fracture Mechanics 30, no. 4 (1988) 531–545.

    Google Scholar 

  30. J.G. Williams, Composites Science and Technology 35 (1989) 367–376.

    Google Scholar 

  31. X.N. Huang, ‘Mode I and mode II intralaminar fracture of unidirectional composites’, Ph.D. thesis, University of Cambridge, U.K. (1990).

  32. N. Sukumar and M. Kumosa, International Journal of Fracture 58 (1992) 177–192.

    Google Scholar 

  33. V.D. Azzi and S.W. Tsai, Experimental Mechanics 5 (1965) 283–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, A., Kumosa, M. Application of the biaxial Iosipescu method to mixed-mode fracture of unidirectional composites. Int J Fract 71, 131–150 (1995). https://doi.org/10.1007/BF00033752

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033752

Keywords

Navigation